The main goals of this research work are to conduct experiments, gather data and measure the horsepower of an internal combustion engine that runs on flex fuel. The tested fuels in this experiment include liquid gasoline, propane, and Syngas produced from woody biomass waste. The engine was first mounted on a stationary stand for ease of access to all of its components and for the convenience of installing a conversion kit for alternative fuels. Since the engine was previously proven to run on liquid gasoline with published specifications and known recorded data, the next step was to plan a conversion of the engine from liquid gasoline to a natural gas internal combustion engine. This was accomplished by a natural gas conversion kit. This kit is exactly like the one that would be used to convert generators to natural gas and can be purchased as a whole, making assembly and fitment faster and more accurate. The engine kit was installed, tuned and tested running on propane and syngas.
The installed kit enabled the engine to run, as anticipated, on propane gas. Also, a secondary experiment was performed to test the engine power output as well as other factors such as efficiency and durability. In order to obtain measurements of power output, the engine was installed onto a rolling Dynamometer. The conclusions from these tests yielded high accuracy Horsepower results; however, more importantly for this research assignment, all of the data collected, experiments created, and information obtained were done in a hands on, active learning environment. This type of applied learning comes with many benefits in comparison to traditional learning in a classroom setting. One of the main benefits is that the student can immediately learn by doing and see the impact of a scientific or engineering theory on a subject in a real world application. Furthermore, the experiments were designed to give the students a sense of what it would be like to work as a professional and prepare them for post-graduation. Giving the students such hands on experience proved to be invaluable because this type of applied learning is very similar to how the industry operates on a daily basis.
Prof. Tawfik obtained his Ph.D. in Mechanical Engineering, from University of Waterloo, Ontario, Canada. He has held a number of industrial & academic positions and affiliations with organizations that included Brookhaven National Laboratory (BNL), Rensse
YEONG S. RYU graduated from Columbia University with a Ph.D. and Master of Philosophy in Mechanical Engineering in 1994. He has served as an associate professor of Mechanical Engineering Technology at Farmingdale State College (SUNY) since 2006. In addition, he has conducted various research projects at Xerox Corporation (1994-1995), Hyundai Motor Corporation (1995-1997), and New Jersey Institute of Technology (2001-2003).
He has been teaching and conducting research in a broad range of areas of system identification and control of nonlinear mechatronic systems and vibrations in structures requiring precision pointing to eliminate the detrimental effects of such diverse disturbance sources. He has authored or co-authored more than 70 publications. His work currently focuses on the development and implementation of modeling and control of renewable energy systems, characterization of nanomaterials, photovoltaics, and nanoscale integrated systems. He is a member of the American Society of Mechanical Engineers (ASME), American Society for Engineering Education (ASEE) and the Materials Research Society (MRS).
Rob Kowalski is a twenty three years old, and currently attending Farmingdale State college as a Mechanical Engineering Student. He works at the Institute for Research Technology Tranfer at Farmingdale. Previously Rob has graduated from Suffolk County Community College with an Associates degree in Automotive Technology and has a background specifically in automotive electronics and emissions. Rob is looking to peruse his future career in Mechanical Engineering within the transportation industry.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.