In the latest set of proposed changes to the ABET Engineering Criteria, Engineering Design is defined as “the process of devising a system, component, or process to meet desired needs and specifications within constraints.” While the revised description goes on to describe typical steps in the engineering design process, it then returns to the subject of constraints by providing, “for illustrative purposes only,” an example list of 15 possible constraints. This language was adopted in response to criticisms regarding the current Engineering Criteria, where Criterion 3(c) references a list of eight realistic constraints, prefaced with the oft-overlooked modifier “such as” that was included to indicate that this was not an exhaustive list. Unfortunately, it has too often been the case where engineering programs have taught these eight constraints – economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability – as being the only constraints that need to be considered when performing engineering design. This leads to misconceptions on the part of students, and even some faculty, as to the true nature of how a design attribute can constrain the solution space of a particular problem. Additionally, given the relative lack of instruction on constraints in a typical engineering program, these misconceptions stay with the students after graduation, thereby failing to serve the needs of the various constituencies – especially employers – of the program.
The purpose of this research is to conduct a baseline study of what our entering first-year engineering students know and understand about design constraints. Specifically, there is an interest in identifying those misconceptions and information gaps regarding constraints that first-year students come in with so that a set of learning objectives can then be developed to resolve these issues by the time of graduation. The primary study group consists of approximately 100 students enrolled in a first semester interdisciplinary introduction to engineering course at a small, private Midwestern university. Two comparison groups affiliated with the same university are being used. The first group consists of seniors enrolled in their respective engineering program’s first semester capstone design course, while the second group consists of practicing engineers serving on an industry advisory board at either the departmental or college level. Participants in the study are presented with a problem of someone wanting an easier way to haul things in and out of an existing household attic, along with instructions for using the Constraint-Source Model to perform the constraint analysis. The Constraint-Source Model is conceptually based on four characteristics traditionally associated with the entrepreneurial engineering mindset: technical fundamentals, customer needs, business acumen, and societal values. The Model provides eliciting quantitative and qualitative questions for a set of over 40 commonly experienced design attributes, allowing one to categorize the level to which each attribute serves to constrain the solution space for the problem being addressed. For this research, a subset of 15 design attributes was used, so as to not overwhelm the first-year students. By comparing and contrasting the responses received from the three study groups, it is hypothesized that an initial set of gaps and misconceptions can successfully be identified.
(Note to reviewers: research data has already been collected from the first-year engineering students, and is in the process of being collected from the two comparison groups. Some interesting gaps and misconceptions have already been tentatively identified, but not yet corroborated through use of the comparison groups.)
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.