This work-in-progress provides a preliminary exploration of students’ metacognitive monitoring abilities by analyzing written self-evaluations of statics problems. Metacognitive approaches to learning encourage students to examine their own thinking processes as a means of deepening their understanding. We used qualitative coding to analyze students’ level of metacognitive awareness regarding both their ability to solve a given problem and their ability to identify sources of error. The full data set includes 10 response sequences (homework solution and student writing about their solution) from 69 students. In this paper, we present the analysis of two of these sequences, one from early and one from later in the semester. The findings show that for both assignments, about half the students recognized their inability to solve the problems correctly, though in both cases the groups were split between those who could accurately identify one or more sources of error and those who could not. This finding points to the need for teaching practices that can help students develop the ability both to accurately assess their performance and, perhaps more importantly, identify sources of error and confusion that can then lead to successful learning.
Dr. Saryn R. Goldberg is an Associate Professor of Mechanical Engineering in Hofstra University’s School of Engineering and Applied Sciences. Dr. Goldberg received her Sc.B. in Engineering with a focus on materials science from Brown University, her M.S. degree in Biomedical Engineering with a focus on biomaterials from Northwestern University, and her Ph.D. in Mechanical Engineering with a focus on biomechanics from Stanford University. At Hofstra she teaches courses in mechanical engineering, materials science and biomechanics. In addition to her research in engineering education, Dr. Goldberg studies the biomechanics of human movement, focusing on gait rehabilitation. She is a member of ASEE, the Society of Women Engineers and the American Society of Biomechanics.
Jennifer A. Rich is Associate Professor of Writing Studies and Composition at Hofstra University. She has published widely in writing studies, rhetoric, Shakespeare, and popular culture. She has recently published a book-length guide to the philosophy of Theodore Adorno. She is working on a study of Post-Nazi era German identity.
Dr. Amy Masnick is an Associate Professor of Psychology at Hofstra University. Dr. Masnick received both her B.S. and Ph.D. in Human Development at Cornell University. At Hofstra she teaches courses in introductory psychology, research methods, cognitive
Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on communication, collaboration, and identity in engineering.
Dr. Cassandra McCall is an Assistant Professor in the Engineering Education Department at Utah State University (USU). Her research focuses on the intersections of disability, identity formation, and culture and uses anti-ableist approaches to enhance universal access for students with disabilities in STEM, particularly in engineering. At USU, she serves as the Co-Director of the Institute for Interdisciplinary Transition Services. In 2024, Dr. McCall received a National Science Foundation CAREER grant to identify systemic opportunities for increasing the participation of people with disabilities in engineering. Her award-winning publications have been recognized by leading engineering education research journals at both national and international levels. Dr. McCall has led several workshops promoting the inclusion of people with disabilities and other minoritized groups in STEM. She holds B.S. and M.S. degrees in civil engineering with a structural engineering emphasis.
Ben D. Lutz is an Assistant Professor of Mechanical Engineering Design at Cal Poly San Luis Obispo.
He is the leader of the Critical Research in Engineering and Technology Education (CREATE) group at
Cal Poly. His research interests include critical pedagogies; efforts for diversity, equity, and inclusion in
engineering, engineering design theory and practice; conceptual change and understanding; and schoolto-
work transitions for new engineers. His current work explores a range of engineering education design
contexts, including the role of power in brainstorming activities, epistemological and conceptual development
of undergraduate learning assistants, as well as the experiences of recent engineering graduates as
they navigate new organizational cultures.
Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Deputy Executive Director of the Institute for Creativity, Arts, and Technology (ICAT).
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.