Children with severe disabilities have unique individual needs. Technology-based designs intended to quantify the well-being of these children or assist them with learning or activities of daily living are often by nature “one of” designs tightly matched to these needs. For children with severe autism, such designs must be incorporated into their environments in unobtrusive ways to avoid upsetting or distracting these children. This design space and its affiliated challenges offer a rich environment for engineering students to exercise their design creativity.
This paper presents an end-of-semester exercise for a Kansas State University Introduction to Biomedical Engineering class, where students propose senior-design projects geared toward children with severe disabilities. The goal of the exercise is to integrate concepts related to biomedical devices, design factors, care delivery environments, and assistive technology into a proposed design with clear practical benefit that can be implemented in prototype form by a senior design team over the span of about two semesters. The deliverable for the design exercise is a four-page paper in two-column IEEE format that adheres to a pre-specified structure. To focus these design-project ideas, students are asked to offer their thoughts within the framework of needs specified by clinical staff at Heartspring in Wichita, KS, a facility that serves severely disabled children, where nearly all of the full-time residents are autistic, and most are nonverbal. In addition to the educational benefits offered by this experience, the author’s intent is to help spur ideas for new senior design projects that can be supported with resources from existing NSF-funded grants which provide equipment and materials for such endeavors.
Six semesters worth of design ideas are presented here, along with the results of assessment rubrics applied to the final papers. The class is populated by students from various departments within the Kansas State University College of Engineering, so design proposals are varied and incorporate low-level to system-level solutions. Some of these design ideas have been adopted by design teams, whereas others await attention.
Steve Warren received a B.S. and M.S. in Electrical Engineering from Kansas State University in 1989 and 1991, respectively, followed by a Ph.D. in Electrical Engineering from The University of Texas at Austin in 1994. Dr. Warren is an Associate Professor in the Department of Electrical & Computer Engineering at Kansas State University. He directs the KSU Medical Component Design Laboratory, a facility partially funded by the National Science Foundation that provides resources for the research and development of distributed medical monitoring technologies and learning tools that support biomedical contexts. His research focuses on (1) plug-and-play, point-of-care medical monitoring systems that utilize interoperability standards, (2) wearable sensors and signal processing techniques for the determination of human and animal physiological status, and (3) educational tools and techniques that maximize learning and student interest. Dr. Warren is a member of the American Society for Engineering Education and the Institute of Electrical and Electronics Engineers. He currently serves as the Chair for the ASEE Midwest Section.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.