MENU
  • ASEE Logo
  • Give
    Give
    ASEE Donations...
    Classified Volunteer
    Login
  • Join Login Volunteer Classified Give
    Give
    ASEE Donations...



About
  • Overview
    • Mission, Vision, Goals
    • Public Policy Statements
    • Constitution
    • Bylaws
    • Organizational Structure
    • Investment Policy
    • Financial Policy
  • Our History
  • Staff Contacts
  • Leadership
    • Board Of Directors
    • Academy Of Fellows
    • Past Board Members
    • Advisory Committees
    • Representatives to External Organizations
    • Executive Director's Message
    • Meeting Minutes
  • Volunteer
  • Careers at ASEE
  • Privacy Statement
I Am A...
  • Member
      Login Required
    • Your Member Page
    • Membership Directory
    • Financials
    • Volunteer for Task Force
      • COVID Recovery
      • Engineering Culture
    • No Login Required
    • Awards
    • Divisions, Fellows, and Campus Reps
    • Sections and Zones
    • Resources
  • Prospective Individual/Organizational Member
    • About ASEE
    • Individual Membership
    • Institutional Membership
    • Major Activities
  • Donor
  • Prospective Partner or Sponsor
  • Advertiser
  • Fellowship Seeker
    • About Fellowships
    • High School
    • Undergraduate
    • Graduate
    • Post-Doctoral
    • Other Programs
Events
  • Conferences and Meetings
    • 2022 Annual Conference & Exposition
    • 2021 Virtual Annual Conference & Exposition
    • 2020 Virtual Annual Conference & Exposition
    • Section & Zone Meetings
  • Council Events
    • Conference for Industry and
      Education Collaboration (CIEC)
    • CMC Workforce Summit
    • Engineering Deans Institute (EDI)
    • Research Leadership Institute (RLI) (Formerly ERC)
    • Engineering Technology Leaders Institute (ETLI)
    • EDC Public Policy Colloquium (PPC)
  • Featured Events
    • Frontiers in Education
    • NETI
    • CoNECD
    • First Year Engineering Experience
    • Workforce Summit
  • Future Conference Dates
Publications
  • News
    • Newsletters
    • eGFI
    • Division Publications
  • Journals and Conference Papers
    • Overview
    • Journal of Engineering Education
    • Advances in Engineering Education
    • Conference Proceedings
    • Section Proceedings
    • Zone Proceedings
    • PEER
    • Plagiarism
  • Monographs and Reports
  • Prism Magazine
  • Data
    • Profiles of E&ET Colleges
    • Case Study Series: Engineering-Enhanced Liberal Education
Impact
  • Public Policy Statements
  • Data Analysis
  • Annual Reports
  • Diversity
Education & Careers
  • Academic Job Opportunities
  • Course Catalog
  • Engineering Education Research and Innovation
    • Engineering Education Community Resource
  • PreK-12
    • eGFI Teachers
    • eGFI Students
  • Engineering Teacher PD Endorsement
Calendar
2020 Annual Conference
The ASEE 2020 Virtual Annual Conference content is available.
See More....
  • Overview
    • Conference Overview
    • 2019 Highlights
    • ASEE-TV
  • Travel
    • Hotel Accommodations
  • Program
    • Schedule-at-a-Glance
    • Conference Highlights
    • Social Media Contest
    • Online Session Locator
    • National Award Winners and Video Competition Winners
    • 2020 VC Program
  • Registration
  • Sponsors & Exhibitors
    • Marketing Kit
    • Sponsors
    • Exhibitors
    • Exhibit Space Contract
    • Information Guide
    • Sponsorship Contract
  • Paper Management
    • Important Deadlines
    • For Authors
    • For Chairs
    • For Workshop Organizers
    • For Reviewers
    • For Moderators
    • Call for Papers
  • Kid's Korner
    • Overview
  • Wellness
    • Overview
  • Overview
    • Conference Overview
    • 2019 Highlights
    • ASEE-TV
  • Travel
    • Hotel Accommodations
  • Program
    • Schedule-at-a-Glance
    • Conference Highlights
    • Social Media Contest
    • Online Session Locator
    • National Award Winners and Video Competition Winners
    • 2020 VC Program
  • Registration
  • Sponsors & Exhibitors
    • Marketing Kit
    • Sponsors
    • Exhibitors
    • Exhibit Space Contract
    • Information Guide
    • Sponsorship Contract
  • Paper Management
    • Important Deadlines
    • For Authors
    • For Chairs
    • For Workshop Organizers
    • For Reviewers
    • For Moderators
    • Call for Papers
  • Kid's Korner
    • Overview
  • Wellness
    • Overview

2020 ASEE Virtual Annual Conference Content Access

Student-developed Learning Objectives: A Form of Assessment to Enable Professional Growth

Presented at Alternatives to Traditional Assessment

This abstract is being submitted as Evidence-Based Practice.

As technology is rapidly advancing, engineers that are able to adapt to a constantly changing global economy are needed more than ever. Engineering students need to work on developing communication and problem-solving skills early and often. However, these traits aren’t easily assessed with a traditional exam and can look different from person to person. To combat this problem, this work suggests a novel and flexible form of assessment which allows students to demonstrate learning in ways that further their own professional goals and benefit the world around them.

This assessment process consists of three main components: student-developed learning objectives, classifying objectives using Bloom’s 3D Taxonomy of Learning, and demonstrating success through external value. While working on a project and learning course content, students are expected to write learning objectives that explain what they will learn, to what level they will learn it, and how they will demonstrate it. By writing learning objectives, students are taking part in the process of metacognition, which helps solidify both content and skills. Just as engineers write design requirements captures to direct their work, students write learning objectives to frame their work in the course.

Because of the large amount of freedom when writing objectives, Bloom’s 3D Taxonomy of Learning is used to help provide students with scaffolding. Students start by showing low-level learning (e.g. writing a report that shows understanding of concepts) which then builds into high-level learning (e.g. publishing a paper about the creation of an experimental procedure). Classifying learning with Bloom’s 3D provides structure while still allowing for student freedom.

Assessment in the course is done by measuring external value, which consists of 1) providing value outside the classroom, and 2) some sort of external review from the scientific community or end-users. For example, an in-class presentation would be lower external value than presenting at a business plan competition. Students feel invested because they have the freedom to choose a form of external value that most closely aligns with their personal and professional goals, and they are able to work on meaningful solutions that benefit their community.

A cardiovascular engineering course at a research university has used this model for more than five years. Successful students have produced peer-reviewed publications, new businesses, and grant funding. To quantify what students are learning, what makes successful students, and how this type of learning can be supported, learning objective data from 28 students were collected during a semester to explore the different pathways that students choose. Students used an electronic portal to log their learning objectives, classify them, and link each objective to proof of their learning.

This work defines the learning objective creation process, explains how it is used for assessment in a cardiovascular engineering course, and suggests how to implement this assessment strategy in other courses. Example learning objectives from a variety of students will be presented and discussed, as well as general trends and takeaways.

Authors
  1. Ms. Lauren Singelmann Orcid 16x16http://orcid.org/https://0000-0003-3586-4266 North Dakota State University [biography]

    Lauren Singelmann is a Masters Student in Electrical and Computer Engineering at North Dakota State University. Her research interests are innovation-based-learning, educational data mining, and K-12 Outreach. She works for the NDSU College of Engineering as the K-12 Outreach Coordinator where she plans and organizes outreach activities and camps for students in the Fargo-Moorhead area.

  2. Mr. Enrique Alvarez Vazquez Orcid 16x16http://orcid.org/0000-0002-7257-0817 North Dakota State University [biography]

    Experienced Systems Engineer with a demonstrated history of working in the electrical and electronic manufacturing field. Highly skilled in Embedded Devices, Software Engineering, and Electronics.
    Extremely motivated and self-reliant with a great believe in autonomy, new ways to solve problems and ROWE approaches. Team player and devoted to create superb working environments through dedication and team culture.
    Strong information technology professional with two MSc's and working on a Doctor of Philosophy - PhD focused in Electrical Engineering from North Dakota State University.

  3. Ms. Ellen M. Swartz North Dakota State University [biography]

    Ellen Swartz is currently pursuing a M.S. degree in Biomedical Engineering at North Dakota State University. Her research interests include STEM education, innovation-based learning, and agent-based modeling of complex adaptive systems. She previously received her B.S. degree from North Dakota State University in Electrical and Computer Engineering.

  4. Mary Pearson North Dakota State University [biography]

    Mary is a Ph.D. candidate in biomedical engineering with research focused in the area of bioelectromagnetics, specifically designing electronics that can be used as medical devices. She obtained her B.S. and M.S. degrees at NDSU in electrical and computer engineering. Mary is also interested in STEM education research.

  5. Ryan Striker P.E. Orcid 16x16http://orcid.org/0000-0001-9058-5636 North Dakota State University [biography]

    Ryan Striker is a life-long learner. Ryan has over a decade of professional experience designing embedded electronic hardware for industrial, military, medical, and automotive applications. Ryan is currently pursuing a PhD in Electrical and Computer Engineering at North Dakota State University. He previously earned his MS in Systems Engineering from the University of Saint Thomas and his BS in Electrical Engineering from the University of Minnesota.

Download paper (448 KB)

Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.

» Download paper

« View session


  • Follow Us
  • twitter
  • facebook
  • youtube
  • instagram
  • linkedin
  • 1818 N Street N.W. Suite 600, Washington DC 20036

  • Telephone: 202.331.3500 | Fax: 202.265.8504

  • © 2023 Copyright: ASEE.org All rights reserved. Privacy Policy.