Drone Construction and Racing for PreCollege Students
Engaging precollege students early in their academic development is an important factor in ensuring their continued interest and focus in education. Science, Technology, Engineering, and Math (STEM) activities, and in particular, those involving unmanned aircraft systems (UAS, or ‘drones’) can provide exciting and valuable outlets for young students who may be considering a technical career path in engineering or related field.
Advances in technology over the past decade have dramatically decreased drone prices and increased their availability, making these commonplace in today’s society. Drones are used for everything from personal entertainment to covering news and sporting events, conducting vital scientific research, monitoring critical infrastructure, and even providing emergency services. In addition, recent relaxations in the regulatory framework governing the rules for UAS operations by the Federal Aviation Administration (FAA) have made it much easier to provide meaningful drone activities to precollege students.
The erosion of these previous barriers has resulted in a much more conducive environment for college and precollege teachers to engage in drone-centric educational activities. As a result, many colleges and precollege schools are beginning to actively partner with various government agencies and corporate sponsors to bring UAS STEM educational experiences to interested students. One example of this is a program instituted at UNIVERSITY this past year, in partnership with the FAA and the local school district.
This program, titled Drone Camp, provided 5th and 6th grade students from the local community an opportunity to learn how to build and pilot small quadcopters, such as those commonly seen in popular Drone Racing League (DRL) events across the country. Held at UNIVERSITY and taught by UAS RESEARCH CENTER personnel, the one-week camp was sponsored by the FAA with the intent of increasing educational opportunities for young students. Elements of instruction included: (1) Basics of flight; (2) Applications of UAS in research and public service; (3) Job opportunities in UAS-related fields; (4) Familiarization with DRL-type small quadcopters; (5) Construction and basic operation of these; and (6) Participation in DRL races on an indoor closed course.
In addition to the above skills, students were exposed to basic concepts of teamwork in sharing tools, common equipment, and instructor resources needed for the construction and racing of their drones. They also worked with each other in small groups to provide feedback on construction and preparation of drones, piloting techniques, and race results. Finally, the students were provided a forum to interact directly with experienced educational program coordinators from the FAA for the duration of the camp.
As a result of its participation in this effort, UNIVERSITY has experienced significant interest in its educational programs by the students and their families. UNIVERSITY has recently kicked off a DRL club for the community and plans to increase the number and scope of racing events, including the eventual incorporation of more complex engineering-centric competitions.
This paper will outline the long term motivation for UNIVERSITY’s involvement in this Drone Camp and related activities, as well as skills learned by the students participating. It will also detail lessons learned from this first event, including student feedback, and provide a look at future outreach activities to be conducted over the next couple years.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.