Engineering solutions to current and future grand challenges are increasingly transdisciplinary. This is especially true in the field of biomedical engineering (BME), where advancements are often made at the interface of materials, electrical, mechanical, mathematical, and medical knowledge. Moreover, today’s biomedical engineers must be capable problem-solvers who are comfortable working in multidisciplinary teams within the design process. Traditional educational approaches, which leverage standard lecture-style dissemination of information with limited hands-on project and design experience, are not sufficiently preparing our graduates for success in the transdisciplinary, project-focused world. In an effort to address this shortcoming for our students, we propose a highly cross-disciplinary, project-based, and de-sign-focused undergraduate BME curriculum.
At our University, content that is currently taught across departments—such as dynamics in mechanical engineering, statics in civil engineering, and circuits in electrical engineer-ing—will be integrated into core BME courses that cover the critical engineering concepts with direct application to biomedical problems. These core courses will be taught by biomedical engineering faculty who have the training to work across the boundaries of traditionally siloed approaches to subject matter in order to promote development of the systems-thinking skills necessary for engineers. Furthermore, engineering design will be included in every year of the undergraduate curriculum to increase hands-on design experience, creative thinking, and pro-gram cohesiveness. All core BME course offerings will be project- and laboratory-based, with an emphasis on active learning and interdisciplinary perspectives on biomedical technologies.
Critical engineering concepts will be taught in three core BME courses of six credits each and four core BME design courses before the students culminate their educational experience with the BME capstone design course. BME Core 1 will comprise biomechanics, instrumentation, and sensors; BME Core 2 will comprise biophysics, biomaterials, and transport; and BME Core 3 will comprise modeling biological systems and signals. BME Design course 0 will provide the fundamentals of the design process and engage students with small team-based design projects motivated by the teaching and clinical needs of colleagues in our adjacent med-ical school. BME Design courses 1 and 2 will cover regulatory standards and validation testing, respectively, in coordination with case studies of BME capstone design. BME Design 3 will consist of small-scale team-based collaborations with capstone teams to aid in the transition into Capstone Design, which is required during the 4th year. An additional elective second capstone semester will focus on commercialization of BME technologies. Early feedback from students on the concept is positive, with one noting “integrating the design process into all four years of education will help to engrain realistic practices and prepare students for what we will be do-ing when we graduate, I wish I could go back and do it again!”.
We will be offering BME Design course 0 for the fourth time this academic year, and are developing infrastructure to support a Center for Biomedical Innovation (CBI), which will house the vertically-integrated design sequence. The CBI will be an internationally-recognized destination for the development of data-supported biomedical devices that address challenges in rural medicine as well as the training of future inventors, innovators, entrepreneurs, and business leaders. Experiential and active learning materials are being developed for the BME Core courses by the BME faculty with an eye towards heavily involving colleagues in our college of medicine in implementation. The medical school has fully transitioned to active learning, and the BME program seeks to join their efforts. These curricular changes are characterized as a Works in Progress and will be implemented starting in the fall of 2020 with a relaunch of the Biomedical Engineering Program within our home department. Data collection and assessment will be rigorously employed during implementation of this new program.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.