A challenge facing STEM education is integration, advancing student conceptual development and disciplinary practices within and across STEM domains. This study supported fifteen third-grade students in an urban elementary school to reason about content and disciplinary practices in science, engineering, and mathematics. This work was supported through a focus on mechanistic reasoning. To foster mechanistic reasoning, students were engaged in the design of kinetic toys composed of systems of levers within an after-school engineering program. To make the operations of these systems salient, students participated in an embodied activity highlighting properties of these mechanisms. Students re-described and inscribed these embodied experiences in order to support reasoning about mathematical (the geometry of circles) and physical systems (systems of levers). The coding of student talk and gesture during the first two days of this engineering program as well as pre- and post-assessments showed students made gains on measures of mechanistic reasoning, mathematical reasoning, and engineering practices.
Dr. Paul J. Weinberg is an Associate Professor of Mathematics and STEM Education at Oakland University (Rochester, MI), where he teaches methods courses for pre- and in-service secondary mathematics teachers. In addition, he teaches mathematics content courses, in the Department of Mathematics and Statistics, for elementary education majors. Dr. Weinberg’s research focuses on students’ reasoning within STEM disciplines, in the context of schooling; this focus has principally been in the field of engineering. He is interested in ways of characterizing and developing disciplinary practices (e.g., mechanistic reasoning) in K-12 classrooms in order to promote and support disciplined inquiry. He has published his research in the Journal of Pre-College Engineering Education Research (J-PEER), Cognition and Instruction, and ZDM: The International Journal on Mathematics Education. In addition, Dr. Weinberg has coauthored a book, The First-Year Urban High School Teacher, focusing on the challenges of supporting teaching and learning in the nation’s highest poverty schools and districts. He has recently begun a research study that will supports mechanistic reasoning through mathematical description in a 3rd grade after-school engineering program. Dr. Weinberg received a doctorate, with a focus on Mathematics and Science Education, from Peabody’s College of Education and Human Development at Vanderbilt University in 2012.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.