Students often view both analytical results and experimental results with supreme confidence without critically evaluating the assumptions behind them. In the Mechanical Vibrations course at Rose-Hulman Institute of Technology lab experiences have been developed to help address this deficiency in students’ understanding of models, experiments, and their limitations. In the first lab, students are required to determine the first natural frequency of a cantilevered beam experimentally using several different approaches and then compare their findings to analytical results. The lab has a final project involving an experimental modal test and the creation of a finite element model of a structure of the students’ choosing. Students are required to propose explanations for the differences in the results from the test and the finite element model. Assessment results show that students have developed a much more sophisticated understanding of analysis and testing as a result of these experiences, and by the end of the course, they use appropriate technical terminology when discussing the differences between test and analytical results.
Phillip Cornwell currently teaches at the United States Air Force Academy and is an Emeritus Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. He received his Ph.D. from Princeton University in 1989 and his present interests inc
Simon Jones is an Assistant Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. He received his Ph.D. from Cambridge University in 2010 and his present teaching and research interests include finite element analysis, vibration and
Daniel Kawano is an Associate Professor of Mechanical Engineering at Rose-Hulman Institute of Technology in Terre Haute, IN. He received his B.S. degree in mechanical engineering from California Polytechnic State University, San Luis Obispo. He obtained his M.S. and Ph.D. degrees in mechanical engineering, with a focus in dynamical systems, from the University of California, Berkeley. His interests include decoupling algorithms for second-order linear systems, rigid-body dynamics, and undergraduate engineering education. Dr. Kawano is the recipient of the 2016 Outstanding New Mechanics Educator Award from the Mechanics Division of the American Society for Engineering Education.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.