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Large-Scale Timber Shear Wall Experimentation  

in an Undergraduate Design Course 
 

Abstract 

Despite the widespread use of light-frame timber construction in residential building, wood 

design courses are typically offered to graduate students and focus on member-level calculations 

for gravity and lateral systems per the National Design Specification (NDS) for Wood 

Construction. In years prior, the 10-week advanced undergraduate class described in this paper 

exposed students through a system-level perspective through a group design project of a multi-

story, mixed-use wood building located in a seismic region. A significant course modification in 

Fall 2020 involved the two class sections constructing and testing large-scale wood shear walls 

representing a one-story segment of a wall present in their multi-story building project:             

(i) segmented and (ii) force transfer around openings (FTAO) shear walls. The stages of each 

shear wall experiment included: design calculations and drawings, fabrication of wall specimens, 

experimental test set-up, conduct of test, and analysis of data. 

This new activity exposed students to additional technical concerns related to constructability 

and seismic performance of shear walls. Also, it promoted development of skills in project 

management and teamwork. Feedback collected via surveys of the students indicated that the 

addition of the timber shear wall experiment allowed students to physically comprehend how 

these structural components are assembled and behave under loading. 

Introduction 

In most civil engineering programs, timber design is listed as a graduate course allowing 

enrollment from upper-division undergraduate students given certain pre-requisites and GPA. 

The curriculum covers the analysis and design of timber buildings, specifically: (i) determination 

of gravity and lateral loads using ASCE 7-16 [1] and the International Building Code (IBC) 2018 

[2], (ii) gravity system design (tension, compression, and beam members), and (iii) lateral system 

design (beam-columns, horizontal diaphragms, and shear walls). Typically, the focus is on the 

structural element and connection, rather than the entire system since many of these courses do 

not have a culminating final project requiring a comprehensive building design. In the course, 

students are exposed to strength and serviceability requirements of the 2018 National Design 

Specification (NDS) for Wood Construction [3] used in the structural engineering industry.  

When there are culminating projects within a timber course, these tend to be more limited in 

scope to theoretical design [4] since there is already a significant amount of new lecture material 

to cover in the class. In contrast, undergraduate senior projects related to timber (that follow a 

design course) allows for a longer timeframe and therefore a broader scope that enables the 

incorporation of construction and physical testing [5-7]. A selection of course and senior projects 

involving timber design are presented below to provide the reader with a basis for the current 

state of project-based learning curriculum specifically for design and/or experimentation of 

timber structures. Literature reviews of project-based learning have been conducted previously 

for reinforced concrete and steel structural design courses by the authors [8-9]. 



Course & Senior Projects 

Ardakani [4] outlines a group project in an elective timber design course offered to 

upperclassmen at Ohio Northern University. Teams considered different residential building 

designs to rebuild the Florida Panhandle region after the 2018 Hurricane Michael. Group tasks 

were to: (i) determine dead, live, and wind loads per ASCE 7 [1]; (ii) design roof framing, 

columns, load-bearing walls, diaphragms, and shear walls using commercial software;              

(iii) produce architectural and structural drawings; and (iv) prepare a report and oral presentation 

to communicate the team’s final design. Survey results indicated that students felt the real-world 

project motivated them to consider client needs and engage in critical thinking as they 

interrogated various design options. Students also responded that the project was technically 

valuable in strengthening their timber design skills. 

Zhou & Tanski [5] describes a senior project at Central Connecticut State University to deliver a 

community pedestrian timber bridge. Tasks included: (i) site survey and mapping, (ii) bridge 

design using industry standards and modelling using commercial software, (iii) construction and 

testing for deflection compliance, and (v) installation of the bridge. Students kept bi-weekly 

progress logs and shared their final project through a written report and oral/poster presentation. 

Similar senior projects are discussed in Welch & Grant [6] and Welch [7] where student teams at 

the U.S. Military Academy (USMA) designed and constructed timber foot bridges. The former 

consisted of two pedestrian bridges at a historic site with rugged terrain near campus, and the 

latter was a bridge replacement on campus near a maintenance facility. All three projects 

provided value to student learning of technical (iterative structural design, construction, and 

physical testing) and professional skills (project scheduling, acquiring funding and materials, 

communicating with collaborators, and coordinating with community stakeholders). 

Research Motivation 

This and prior literature reviews [4-9] by the authors on project-based learning in structural 

design courses indicate that it is more educationally effective and engaging to simulate tasks 

students will see in the structural engineering industry compared to a lecture-based approach. 

The characteristics that define the most successful cases of project-based learning address a 

multi-dimensional problem that enable students to participate in one or more of the following: 

• Design a structural system for a building or bridge using code-based approaches and/or 

commercial software with considerations for strength and serviceability. 

• Conduct tasks associated with industry partners: construction management (prepare 

materials schedule and construction timeline as well as oversee and inspect fabrication), 

contractors (build structural system based on provided drawings and specifications), 

materials and systems testing engineers (collect and test material samples, or conduct 

physical experiments to assess structural system performance), etc. 

• Communicate design solution through professional written report (calculations and 

drawings) and/or oral or poster presentation. 

The literature review yielded no similar timber design courses (undergraduate or graduate) which 

use a multi-dimensional, project-based learning approach to expose students specifically to 



timber shear walls common in seismic areas. Thus, to address this existing shortcoming, the 

authors implemented the new design-build-test project described in the remainder of this paper. 

Course Details 

The Department of Architectural Engineering at Cal Poly is situated on the West Coast and thus 

places an emphasis on structural seismic design. This training starts in a junior-level structural 

systems lab course where students use ASCE 7-16 [1] to calculate gravity and lateral loads on 

buildings and identify load paths. Two quarters later in the curriculum flowchart, students take a 

lecture course that introduces timber design per the 2018 NDS [3] for structural members 

subjected to axial, shear, and bending forces, connections, as well as diaphragms and shear walls.   

The new projects described in this paper took place in the subsequent course where students are 

further exposed to timber design, usually during senior year, which is the ARCE 451 – Timber & 

Masonry Structures Design and Constructability Laboratory. Instructors for ARCE 451 are 

licensed engineers with many years of industry experience who provide lectures and project  

advising. In past offerings of the course, students designed a 3-story, mixed use wood building 

during the 10-week quarter where they: conducted a structural analysis, produced calculations 

for the structural design of the gravity and lateral force resisting systems, and prepared 

construction drawings. This paper focuses on the Fall 2020 offering of two ARCE 451 sections 

(16 students each, 9 contact hours per week) where new design-build-test projects of segmented 

and force transfer around opening, FTAO, shear walls were introduced for a more multi-

dimensional student experience involving additional tasks of construction and experimentation.  

Project Overview 

In Fall 2020, each course section designed, built, and tested one wall specimen type: segmented 

and FTAO walls. This pairing of wall types was selected to demonstrate the impact that openings 

have on wall flexibility. The intention of adding the new projects to the course was to expand the 

student knowledge beyond theoretical design to include construction, physical testing, and data 

analysis of a common timber lateral force resisting system. The experience also helped students 

practice professional skills critical to executing a project of this scope and a large team.  

In addition to the educational merit to the undergraduate students in the course, the instructors in 

Fall 2020 have been particularly interested in FTAO shear walls since they are gaining in 

prevalence in industry, yet current timber design codes do not provide an adequate method to 

accurately predict their lateral stiffness. Therefore, to utilize the ARCE 451 results for broader 

industry impact, the first author of this paper was recruited as a graduate researcher to 

collaborate with undergraduate students during Fall 2020 and conduct more detailed design, 

experimental set-up, data collection and analysis than what was necessary for the course.  

Project Tasks  
 

The project tasks the student teams were responsible for included:  
 

• Design calculations: selection of sheathing, framing, fastening pattern, chord post size, 

and holdowns to provide sufficient resistance for shear, shear transfer, and uplift;  



• Shop drawings: documentation of design including material take-off used to assess 

against existing material inventory and make purchasing or donation requests; 

• Fabrication of wall specimen: assembly of framing and sheathing, installation of wall 

anchorage into concrete foundation, and straps around window openings (for FTAO); 

• Experimental test set-up: construction of loading beam, configuration of support frame, 

erection of wall, and instrumentation; 

• Testing: conducting a cyclic loading protocol to collect data on wall strength and 

deflection as well as identify damage progression and final failure mechanism;  

• Analysis of data: evaluation of experimental results compared to NDS predictions for 

strength and deflection as well as reflection on anticipated versus observed behavior. 

To elaborate on the last point of data analysis, students computed wall shear strength via two 

approaches: (i) 2015 NDS Special Design Provisions for Wind and Seismic (SDPWS) [10] 

Section 4.3.3.1 which accounts for sheathing material, thickness and fastener penetration, type, 

size, edge spacing and (ii) American Plywood Association (APA) Research Report 154 [11] 

Table A1 using the average experimental results for the walls with a given sheathing 

material/thickness and fastener type/size/spacing. For the segmented shear wall, students 

computed deflections utilizing the NDS SDPWS [10] Section C4.3 using the 3-term (bending, 

shear, tie-down nail slip) and the 4-term equation (also includes nail slip). Specifically, they 

determined the deflection associated with the predicted design strength and developed load-

displacement plots. For the FTAO wall, the deflection calculation was left open-ended. The 

instructors challenged the students to conduct research, consider how they have calculated wall 

deflections in their past courses on other structural material types, and propose an approach for 

coming up with a reasonable estimate for the FTAO wall. The graduate student researcher did 

pursue a more involved calculation for the FTAO wall type using a technical note and 

accompanying Excel-based tool available through the APA website [12]. 

 

Design 

The segmented and FTAO walls were nominally identical with a height of 12’-11” and width of   

6’-8”. In order for students in both course sections to practice framing out a window, both the 

segmented and FTAO walls have top cripple, header, king studs, jack studs around the 3’ by 3’ 

window ‘opening’. In the segmented wall, the location of the ‘opening’ is filled in with plywood 

and two infill studs, and for the FTAO it is an actual opening. Along the top and bottom of the 

FTAO window, Simpson CMSTC16 strap ties were installed. These are 16-gauge galvanized 

steel metal straps that are 3” in width with two rows of a staggered 3” o.c. hole pattern, which 

was installed by providing nailing per the manufacturer’s instructions. These straps create a 

force-transfer mechanism around the window opening between upper to lower panels of the wall. 

Edge and boundary nailing for the 15/32” plywood consisted of 8d sinker nails at 6” o.c. and 

field nailing was 12” o.c. At the base of the wall, six 1/2”-dia Titen anchor bolts were utilized as 

sill bolting and two Simpson HDU14-SDS2.5 holdowns were used at the holdown posts.  

 

The lumber size, length, species, and commercial grade for the various structural elements in the 

wall is summarized in Table 1, where the abbreviation DF-L stands for Douglas Fir-Larch. The 



structural elements indicated in this table are labeled in the drawing shown in Figure 1, where 

black solid lines in the drawing indicate members in both the wall types and red dashed lines 

represent members that are only in the segmented wall. 

 

Table 1. Lumber Schedule for Timber Shear Walls 
 

 

 
 

Figure 1. Segmented and FTAO Timber Shear Wall Designs  

(Black solid lines = both wall types, red dashed lines = segmented wall only) 

Structural    

Element

Quanitity Nominal Size        

[in. x in.]

Length                                                         

[ft]

Species Commercial 

Grade

Mudsill 1 2 x 6 6'-8" DF-L No.1&Btr

Top Plate 2 2 x 6 6'-8" DF-L No.2

Sill 2 2 x 6 3'-0" DF-L No.1&Btr

Blocking 4 4 x 6 1'-1 1/2" DF-L No.1&Btr

Header 1 6 x 6 3'-3" DF-L Select Structural

Compression Post 2 6 x 6 12'-6  1/2" DF-L No.1

King Stud 2 2 x 6 12'-6  1/2" DF-L No.2

Trimmer Stud 2 2 x 6 10'-0 1/2" DF-L No.1&Btr

Jack Stud 2 2 x 6 6'-9 1/2" DF-L No.1&Btr

Top Cripple 2 2 x 6 2'-0 1/2" DF-L No.1&Btr

Infill Stud* 2 2 x 6 3'-0" DF-L No.1&Btr

*Segmental wall only



Fabrication 

Fabrication Facilities: Students completed fabrication activities in the College of Architecture 

and Environmental Design (CAED) High Bay lab, which includes a wood shop providing access 

to saws, nail guns, and other handheld tools for wood framing. Shop personnel and course 

instructors provided safety and training oversight to the students.  

Wall Specimen Fabrication: Figure 2 shows the various fabrication tasks that the students were 

exposed to during the shear wall design-build-test projects: measuring, cutting, and laying out 

framing members; assembling frame members and attaching plywood (nailing and bolting); 

installing strap ties, holdowns, and anchor bolts; and fabricating a connection beam to the 

actuator. The images are provided to demonstrate the scale of the project and extent of student 

involvement. 

 

 

 

 

 

     

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Timber Shear Wall Specimen Fabrication 

(c) Rotating wall to attach plywood 

(b) Nailing framing members (a) Laying out framing members 

(e) Installing holdowns 

(d) Attaching plywood and strap ties 



Experimental Testing 

Laboratory Facility: Specimen fabrication and testing took place in the CAED High Bay Lab, 

shown in Figure 3, where there is a 3-ton Detroit Hoist crane and an Enerpac RR5013 hydraulic 

actuator with 110 kips compression/23.6 kips tension capacity, as well as a steel reaction frame 

and strong floor.  

 

 
 

Figure 3. FTAO Timber Shear Wall Specimen Erection in CAED High Bay Lab 
 

Wall Experiments: Both the segmented and FTAO walls were subjected to cyclic loading using a 

hydraulic actuator attached to the top of the wall with a steel channel. The actuator is outfitted 

with a load cell to measure the applied lateral force. The wall instrumentation consisted of string 

potentiometers installed at the top of wall, top and bottom of the window ‘opening’, and bottom 

of wall to measure specimen deformation. There was an additional string potentiometer at the 

base of the foundation to document any slip in the experimental test setup. Linear potentiometers 

were placed at the location of the two holdowns to investigate uplift during the cycles of loading. 

Data were recorded and could be visualized in real-time using an in-house data acquisition 

software. Still and video cameras were utilized to document wall response. The experimental 

setup and instrumentation of the FTAO wall specimen is shown in Figure 4. These images are 

provided to provide the reader with a visual understanding of the level of sophistication that the 

undergraduate students were exposed to in the instrumentation and data acquisition process. 

 

 



 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 4. FTAO Wall Instrumentation and Data Acquisition  
 

Student Deliverables 

Technical deliverables included a report for both wall specimens with: shop drawings, material 

schedule, calculations and plots for measured vs. predicted load-deformation behavior (Figure 5), 

and qualitative documentation of damage (Figure 6) as compared to expectations based on 

codified shear wall analysis. Additionally, one student compiled a video that documented the 

entire process of the design-build-test project which is available on YouTube [13]. 

Figure 5 shows the experimental load-deflection results from the segmented (solid) and FTAO 

walls as compared to the students’ prediction using the 3- and 4-part SDPWS equations for the 

solid wall [10]. This prediction activity was an important learning experience for the students as 

the formulas can be difficult to understand and identify all the terms correctly without a complete 

understanding of wall behavior under loading. The students were able to observe that the actual 

deflection of the solid wall was underpredicted by both equations by at least 50% at the design 

shear capacity, and that it is also inappropriate to try to use these equations for the FTAO wall. 

This experience illustrated to the students why their faculty instructors and the graduate student 

researcher assisting with their course project were pursuing further investigations of these 

calculation approaches for plywood wall deflection. Thus, the experimental portion of this course 

project will serve as an important datapoint in a larger research study at Cal Poly on solid and 

FTAO walls with the ultimate intent of addressing the limitations of existing SDPWS equations.  

(a) Instrumentation on Front of Wall 

Actuator/ Load Cell 

String pots 

(b) Data Acquisition Hardware & Computer 



       

Figure 5. Experimental vs. Predicted Load-deformation Curves for Solid and FTAO Walls 

(Experimental = Green, Predicted = Black, Design Value = Other Colors) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Observed Damage in FTAO Specimen 

(b) Crushing between panels (a) Tie strap buckling below window 

(c) Warping of plywood (d) Splitting at compression post 



Student Assessment 

Description of Student Survey 

Students enrolled in ARCE 451 during the Fall 2020 quarter were asked to complete a survey 

about the new segmented and FTAO shear wall design-build-test projects. Fourteen students 

from each of the two course sections responded. Of the 28 students: 15 identified themselves as 

in-person (participated in design lectures, group activities, construction and testing on campus),  

3 as fully virtual (never physically came to campus to participate and were integrated into the 

course by the faculty and students via Zoom meetings), and 10 as hybrid (some combination of 

in-person and virtual).  

 

The survey contains 23 standard 5-point Likert scale questions (in some cases N/A could be 

selected to accommodate responses from in-person, virtual, and hybrid students), and six free 

response questions. The Likert scale questions asked students to rate the projects on:                  

(i) educational preparation and feedback provided by the instructors, (ii-iii) exposure to and 

confidence with various design and fabrication skills, and (iv) overall effectiveness in learning 

design, fabrication, and testing. The free response section consists of a commentary on the 

conservatism of the code based on the observed strength and deflection of the physically tested 

wall, the strengths and weaknesses of the project, the aspects of the course that was most 

impactful to student learning, as well as overall skills and lessons learned from the experience. 
 

Summary of Student Feedback on Multiple-Choice Questions 

Students assessed how effective the instructor was at providing a knowledge background that 

would enable them to complete the design tasks associated with project. This includes lectures in 

advance of and feedback during project tasks. Responses are summarized in Figure 7. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7. Student Perception of Instructor-Provided Preparation and Feedback  

(5 = Strongly Agree, 1 = Strongly Disagree) 

 

Survey results show course lectures and submittals were effective preparation students for the 

design-build-test project, and that the project cultivated student proficiency in designing timber 

lateral load resisting systems, specifically segmented plywood walls. One area the survey 

indicated could use more focus was in consistent, formal feedback through the project. 

The lectures were effective in preparing me for the 

project. 
 
 

The submittals were effective in preparing me for the 

project. 
 

The instructor’s explanation for the project was 

detailed and clear. 
 
 

The instructor provided sufficient feedback during 

the project. 
 

The pace for the project was appropriate. 
 

The project increased my confidence in segmental 

plywood wall design. 

 



The survey results shown in Figure 8, provide a general understanding of student sentiment of 

which portions of the project was most valuable to their learning. Students were asked to rate 

“The following portions of the project were effective at increasing my understanding of timber 

wall systems. Select N/A if you did not participate in a particular portion of the project.” 

 
 

 

 

 

 

 

 
 

Figure 8. Student Perception of Effectiveness of Different Project Stages were to  

Understanding Timber Wall Systems (5 = Strongly Agree, 1 = Strongly Disagree) 

 

As a note to interpret the “N/A” responses in Figure 8, 10.7% of the students were fully virtual 

and another 35.7% were hybrid (partly virtual/in-person). This impacts the availability of those 

individuals to participate in the hands-on activities of fabrication and testing. Consequently, to 

have sufficient tasks to engage the virtual/hybrid students the tasks of design, deflection 

predictions, and data analysis were also distributed accordingly. The students indicated that the 

greatest learning gains were in the fabrication process (constructability) as a meaningful 

extension of the design methodology they had learned in the lecture portion of the course. This 

was followed by the value of experimental testing and finally design. This motivates the 

reasoning for instructors that already incorporate a multi-dimensional timber design project in 

their lecture or senior project course to extend this to have some building or testing component. 

 

There were a few follow up questions to assess student confidence related to the specific design 

processes associated with the segmented wall (shear design, shear transfer design, holdown 

design, chord design, wall stiffness/deflection prediction), as summarized in Figure 9.  Students 

were asked to rate “The project increased my confidence in:” 

 

 

Figure 9. Student Perception of Confidence in the Design Process of Segmented Shear Walls 

(5 = Strongly Agree, 1 = Strongly Disagree) 
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Wall Stiffness/Deflection Prediction 



The responses shown in Figure 9 indicated students developed a high level of familiarity with 

wall deflection calculations for segmented walls through use of the 3-part and 4-part SPDWS 

equations (Avg = 4.3). This was followed by shear and holdown design (Avg = 4.1), and then 

shear transfer and chord design (Avg = 3.8-3.9). The metrics related to student confidence in the 

major project topics inform instructors on which topic areas to provide more guidance in the 

lecture and feedback to student designs during the project in future course offerings. 

 

The survey also investigated student confidence related to various fabrication tasks as shown in 

Figure 10. Students were the primary individuals responsible for specimen fabrication with 

training, assistance, and safety oversight from the instructors and shop technicians. As indicated 

previously 46.4% of the students were virtual/hybrid participants, and as a result a relatively high 

number of students may have not participated in certain tasks. Students were asked to comment 

on: “During the project, I participated in and became confident in the following tasks. Select N/A 

if you did not participate in a particular task or were a virtual student.” 

                                                                                

Figure 10. Student Perception of Confidence in the Fabrication Tasks for Shear Walls Projects 

(5 = Strongly Agree, 1 = Strongly Disagree) 

 

The goal with Figure 10 is to identify construction, instrumentation, and data acquisition tasks 

that many students have not had much exposure to previously and investigate their level of 

comfort now having done the course project. The findings show that generally if a student had 

exposure to one of these tasks during the course project, they developed a high level of 

confidence in this task. The value of this hands-on learning in the high bay laboratory with 

construction/machine shop tools, actuator systems, instrumentation, and data acquisition systems 

should not be underestimated. Through prior studies that the authors have conducted [9], they 

have observed that through this type of design-build-test projects students have become equipped 

and interested to the extent where they have gone on to pursue large-scale experimental tests for 

their senior project or master’s thesis research or considering new engineering job paths (like that 

of forensic engineer that involve in-field and laboratory testing). 

Nailing 

Bolting 

Cutting 

Erecting Wall 

Installing Instrumentation 

Using Actuator to Apply Lateral Loads 

Collecting Quantitative Data from Instrumentation 

Capturing Qualitative Data via Photo/Video 

 



Lessons Learned 

The following lessons learned are from the perspective of the professors leading the course in 

Fall 2020 quarter: 
 

• The opportunity for hands-on learning (fabrication and experimentation) is significant 

but requires patience. It is critical that students appreciate the constructability of their 

plywood shear wall designs and develop confidence in methods to assess structural 

performance. While professors with experience in the trades or large-scale laboratory 

testing have the advantage of understanding the tasks and timeline for a design-build-test 

project, they should be empathetic and anticipate student struggles or questions who may 

not have basic prior construction or experimental experience.   
 
 

• Testing full scale models aids students in visualizing the behavior and failure of lateral 

force resisting systems. Full-scale testing provided students a sense of scale of the 

structure’s size and strength but also an aid to understanding of behavior and failure of 

various limit states. This tangible experience offered a memorable, alternative approach 

to the traditional project-based learning activities from prior ARCE 451 offerings. 

• A lengthier design-build-test schedule would probably create a more desirable learning 

outcome. The project tasks should occur slowly outside of class time over the course of 

several weeks, rather than compressing in a week, especially if blocks of shop time and 

staff are limited. 
 

Working as a team is critical for the project success. A flexible and engaged shop or 

laboratory technicians supporting the class project is necessary to help make the activity 

flow smoothly. Unexpected construction and testing challenges can arise, having multiple 

perspectives is essential to solving them. 

 

Conclusions 
 

In summary, the objectives of this new project-based learning approach included providing the 

students with a hands-on opportunity to understand the construction, performance, and failure 

mechanisms of solid and FTAO plywood shear walls. Knowledge of the construction of a shear 

wall provides the student with a deeper appreciation for all the working pieces that comprise this 

structural element. It also aids in their future structural engineering careers in their ability to 

design walls and develop creative solutions to non-standard situations. The design of the test 

wall is like what they experience in the lecture portion of the class, yet it enables them to test the 

structural component at the full-scale and validate their calculations according to theory. Lastly, 

it allows students to observe the damage progression and ultimate failure of two wall types. They 

get to witness firsthand various modes of failure and gain a more complete understanding of the 

design capacity, ultimate capacity, and ductility of the walls. 

Based on prior experience of two of the faculty authors, who have taught the course with and 

without the new project, the addition of the design-build-test project has enabled undergraduate 

students to develop a deeper insight into plywood wall construction as well as the components 



that form the gravity and lateral systems of a timber structure. In addition, the hands-on 

experience provides them with the opportunity to support their understanding of analytical 

computations with full-scale testing, data analysis, and observation of various failure modes. One 

of the most rewarding successes of these type of projects that the authors have witnessed are 

when students progress from not ever holding a hammer to completing a full-scale test of a 

plywood shear wall. In notable cases, this type of project has provided students with the 

confidence and desire to pursue further experimental research either through graduate school or 

an industry position in fields related to structural engineering.  
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