
Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Thinking in Parallel: Multicore Parallel Programming for STEM Education

1,*
A. Asaduzzaman,

2
R. Asmatulu, and

1
R. Pendse

1
Department of Electrical Engineering and Computer Science and

2
Department of

Mechanical Engineering, Wichita State University, 1845 Fairmount St, Wichita, KS 67260

*E-mail: Abu.Asaduzzaman@wichita.edu; Tel: +1-316-978-5261

Abstract

Academic research and engineering challenges both have increasing demands for high

performance computing (HPC), which can be achieved through multicore parallel programming.

The existing curricula of most universities do not properly address the major transition from

single-core to multicore systems and sequential to parallel programming. They focus on applying

application program interface (API) libraries and techniques like open multiprocessing

(OpenMP), message passing interface (MPI), and compute unified device architecture

(CUDA)/graphics processing unit (GPU). This approach misses the goal of developing more

long-term abilities to solve real-life problems. In this article, we propose a novel approach to

teach parallel programming that will prepare science, technology, engineering, and mathematics

(STEM) students for present and future computation challenges. Proposed approach requires

some C/C++ programming knowledge. As a preliminary attempt, we introduce multithreaded

parallel programming to our science and engineering students. Based on the Student Outcomes

Assessment Reports and feedbacks from information technology (IT) professionals, proposed

approach has potential to provide adequate knowledge so that students can analyze complex

problems and develop parallel solutions. According to the Steady State Heat Equation

experiment, CUDA/GPU parallel programming may achieve up to 241x speedup while

simulating heat transfer on a 5000x5000 thin surface.

Keywords: Concurrent processing, CUDA/GPU technology, multicore/manycore systems,

parallel programming, STEM education.

1. Introduction

According to job market trends, there are increasing demands for parallel programmers in the

industries. Based on an insidePHC report, from November 2009 to July 2011, OpenMP jobs

increased 85%, MPI jobs increased 33%, and CUDA jobs increased 22% [1]. Going forward, all

processors (except some small embedded processors for specialized devices) will have multiple

cores in their central processing units (CPUs). Moreover, attached GPU cards with large

numbers of cores have become very attractive for high performance computing and can provide

orders of magnitude speedup over using the CPU alone [2, 3]. To address this space, Intel has

rolled out its Many Integrated Core (MIC) architecture [4]. Systems with a small number of

cores such as present multicore processors can use a shared memory model whereas as the

number of cores increase, hierarchical user-managed memory and distributed memory models

can be expected. Undergraduate programming has yet to address this major transition from single

core processors to multicore and many-core processors properly. Training students in this

technology is critical to the future of exploiting new computer systems [5]. Today, with all the

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

advances in hardware technology, we as educators find ourselves with multicore computers as

servers, desktops, personal computers, and even handheld devices in our laboratories (Labs)

while still teaching undergraduate students how to design system software, algorithms and

programming languages for sequential environment [6]. The current practice is to introduce

parallel programming at graduate-level (only at some high-ranked universities), starting with

parallel libraries – OpenMP and thread APIs for shared memory systems [7], MPI for message-

passing distributed memory systems [8], and CUDA/GPU for CPU/GPU programming [2].

Usually, such a course begins with learning a library, typically MPI applied to a simple parallel

applications such as matrix multiplication or sorting, then move onto thread-based tools such as

OpenMP, and finally onto programming GPUs with multithreaded CUDA [9-13]. The focus is

on learning programming libraries applied to a few simple parallel applications. This approach

does not fulfill the goal of developing more enduring skills to rationalize about parallel solutions

and solve larger problems for multiprocessor systems. Therefore, STEM education is badly in

need of an approach to teach parallel programming that focuses on higher-level programming

strategies for computational problems and especially on ease of programmability.

The rest of the paper is organized as follows: proposed approach to develop/update pedagogy for

teaching parallel programming is presented in Section 2. Learning materials are discussed in

Section 3. Section 4 summarizes the course overview. In Section 5, the Steady State Heat

Equation is studied as an example of CUDA/GPU assisted multithreaded parallel programming

model. Finally, this work is concluded in Section 6.

2. Proposed Approach

We propose an approach for teaching undergraduate/graduate students how to design and

develop parallel algorithms for multicore architectures. The key success and challenge of this

project will be helping students to “think in parallel”. Major steps and goals of the proposed

approach are discussed below.

2.1 Major Steps

Major steps to develop a new pedagogy or update an existing pedagogy are shown in Figure 1.

Our proposal includes right-to-the-industry-needs activities to prepare students for present and

future computational (science and engineering) challenges.

Figure 1. Top line: pedagogy development and integration with existing course(s). Bottom line:

hands-on-activities based on real-world IT needs using multicore parallel programming in C.

Analysis: Current

Courses, Industry Needs
Development:

Pedagogy

Implementation:

New/Old Courses

Assessment:

Students Learning

C Threads OpenMP/C Open MPI/C CUDA/C

Hands-on-activities on multithreaded parallel programming

Start

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Our proposed approach has four major steps: analysis, development, implementation, and

assessment. First, industry needs and current courses are probed to determine if a new course is

needed or existing course(s) should be updated. Then, pedagogy is developed and implemented

(accordingly). Finally, student outcomes are assessed. Professional feedbacks and student

outcomes are considered to improve the pedagogy. We envision that in order to fulfill the

growing IT industry needs, multicore parallel programming will be made available to all

undergraduate/graduate engineering students by updating and restructuring existing courses

(rather than introducing new courses) [8, 14]. However, this paper provides a complete

documentation to prepare a new course or update existing course(s).

2.2 Major Goals

Most current teaching follows a traditional path of teaching low-level APIs although the parallel

programming problems now faced by programmers are complex. Our proposal is intended to

move away from this approach and make the student programmers begin with decomposing the

problem into widely known patterns and structures. Our hope is that our approach will make

parallel programming easier and more productive. Major goals of our proposal include:

• Introduce multicore concept and parallel programming techniques in a Lab oriented

teaching setting for undergraduate/graduate students.

• Produce educational materials using the pattern-based programming approach (as much

as possible) for faculty and professional development.

• Evaluate the materials with diverse groups of students and related IT professionals.

• Develop and implement a solid cyclic strategy for revision and re-testing.

2.3 Involving High School and College Educators

We often realize that some university students have fear about science, technology, engineering,

and mathematics courses. One reason may be that the STEM education, especially the new

technology, is not effectively transformed to the students during their high-school and/or lower-

level college/university years. This causes serious problems for educators to teach and students

to learn at upper-level undergraduate and graduate-level courses. The teaching style to provide

pre-STEM and/or STEM education to the high school and college students are very important.

For example, in addition to sequential operations, parallel operation concepts can be given at

some high school level courses like Math, Physics, Chemistry, and Science. Similarly, parallel

operation concepts can be given at some college level programming courses like C/C++. That

will help students understand multicore computer systems and parallel computing at the

universities. Therefore, we think that it is important to involve high school, community college,

technical training institution, and university teachers to discuss and address how to improve

STEM education and students’ learning. A combined effort of STEM educators should help

review the current progress and determine the future adjustments.

3. Learning Materials

The importance of developing a successful strategy to teach parallel computing and

programming has been raised many times in the past. We think the question is not whether we

should incorporate the subject in the undergraduate/graduate curriculum, but what would be the

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

right approach. Peter Pacheco designed and offered a sophomore-level undergraduate/graduate

parallel computing course in the department of computer science and mathematics at the

University of San Francisco for the first time in 2004. One of the major goals of the course was

to provide the students with hands-on experience and encourage them to start to think in parallel.

His conclusions, after offering the course five times, were consistent with the observations that

students find the concepts of synchronization, race conditions, and parallelism challenging. His

final recommendation was “don’t expect them to discover how to write parallel programs: give

them a lot of guidance.” Given that the goal of the course is to help students to “think in

parallel”, we should provide the environment within which students solve problems with

parallelism as default. Given such a framework and starting with a problem statement that needs

to be solved in this framework, will encourage the students to solve the problem in parallel.

We will focus on programming multicore computers with shared memory programming

languages as well as on message passing programming environments for this course. We believe

the foundations for thinking in parallel can be better built within the scope of shared memory

which is the MIMD model for the multicore computers. The MPI programming and design

developed for message passing distributed MIMD platforms adds an additional level of

complexity and challenge to problem, data, and program partitioning that can be further explored

as an advanced level. This experience was shared by Adams, Nevison, and Schaller who

designed three different parallel computing courses at three different colleges, Calvin, Colgate,

and RIT [15]. Their experience was that depending on the computing environment they had to

design different courses and provide a different set of learning experiences for their students.

In many cases, the best parallel solution will perform poorly on a sequential machine. The

parallel solution performs better only when it is executed concurrently in parallel on a parallel

computer with enough number of processors. Learning about (i) the trade-offs between

parallelism and memory usage, (ii) inherently sequential access data structures versus data

structures that allow for parallel access, (iii) allowing more operations to be performed in a

parallel version compared to the sequential version of the same problem, etc. can be done most

effectively when students observe these factors in a hands-on laboratory environment.

Beyond this point is also the philosophy of rethinking the computer science curriculum for

teaching students to start with parallel programs. Some of the questions to keep in mind as we

introduce the concepts of parallelism and parallel programming to the students include:

• How can one analyze an application to determine what operations can be done in

parallel?

• What aspects of a particular algorithm influence what can be done in parallel?

• What aspects of a particular algorithm influence what cannot be done in parallel?

• Is there a way to express a computation without introducing any artificial sequentiality?

• How dependences among operations can be used to structure special software

organizations to carry out the computation efficiently on a parallel computer?

We intend to use the lessons we learn and the outcomes of students’ experiences throughout the

course to develop further strategies for developing ideas for introductory parallel problem

solving computer science courses.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

4. Course Overview

The best way to equip students with a rich set of experiences in parallel programming is to give

them a chance to work with many types of parallel applications. We plan to combine the parallel

computing concepts with the skills of parallelizing real world problems. Throughout the course

we will use applications in linear algebra, scientific/engineering problems, and nanocomposites

as examples in the lectures to relay the fundamental concepts, as frameworks for homework

assignments, and as case studies for programming Lab assignments and team projects. Students

will be engaged both in classroom and out-of-classroom actively by participating in the

classroom discussion and laboratory exercises designed to engrain the concepts being taught

through the lectures.

4.1 Structure of the Lab Assignments

We will design two types of Lab experiments: Individual Lab assignments and one final team-

project. All assignments will have a classroom discussion followed by students writing a

summary of their understandings, observations, and conclusions.

I. Individual Lab assignments: In laboratory room; about 10 Labs; 10% of the final grade. The

progression of each in-Lab assignment will be first introducing the intended concept through

a dedicated lecture and presenting the students with a complete demonstration of a working

program which students can simply copy and run, observing the input/output behavior from

the compiler and executing program, and checking execution times. The student is then asked

to make a simple modification to the demonstration problem. This forces the students to use

the editor, and to solve problems in compilation and execution. The Lab will be followed by

a classroom discussion.

II. Final team-project: 20% of the final grade. Students will form teams based on their interest

and will work under supervision of either the instructor or one graduate teaching assistant.

For the final team-project, students will be presented with a number of case study alternatives

to choose from. Students may also propose their project of interest for approval. Each team

will produce a written report and will demonstrate their final projects to the class.

4.2 Structure of the Tests

We plan to have three types of tests: Homework (HW), quiz, and exam.

I. HW: Take-home tests; about 10 HW; 10% of the final grade. Each HW will be assigned

based on the materials covered most recently.

II. Quiz: Classroom tests; about 4, 30 minutes per quiz; 20% of the final grade. Each quiz will

cover most recently taught materials.

III. Exam: Classroom tests; 2 exams, 70 minutes per exam; 40% of the final grade. Exam-1 will

be right before the Mid-Term point and Exam-2 will be right before the study day. Materials

taught after Exam-1 will be covered in Exam-2.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

4.3 Course Outline

Proposed course should be a 4 credit hours course with one credit hour laboratory activities. A

high-level course outline of the proposed semester long senior-level course is presented next.

Prerequisites: Students should have adequate knowledge on the topics covered in Introduction

to Computer Architecture and Problem Solving and Programming in C/C++ courses.

Module 1: Background and Motivation. This module will introduce the parallel computing by

means of evolution of parallelism, concurrency, and multicore/manycore computer architectures

with specific examples to demonstrate each concept.

Homework: Students will be asked to explain their understanding of parallelism in sequential

machines and contrast it with the type of parallelism in the new multicore computers.

Module 2: Observing Parallelism. This module introduces the data dependence relationships

and their impact on the ability to perform parallel operations using dataflow graphs. It will

present several sequential and parallel computation examples using data dependent graphs to

demonstrate the representation of parallel operations in a given algorithm. Performance analysis

for these computations will be presented using size, depth, speedup and efficiency of algorithms.

Graph theory will be introduced and applied to several example computations.

Homework: Design a parallel computation using data dependent graph; analyze the computation

using size and depth; measure speedup and efficiency of the resulting algorithm. This homework

problem may be regarding amount of storage needed for archiving many data structures which is

a good application of parallel prefix computation covered in lectures.

Module 3: Getting Started. To express algorithms, a set of pseudo code conventions for

expressing sequential and basic parallel operations such as process creation and termination

(fork/join) and storage classes (shared/private variables) will be presented. An example parallel

pseudo code such as matrix multiplication will illustrate the parallel operations. Pthread in

C/C++ will be used to illustrate multithreaded programming.

Homework: Write a parallel code for a parallel prefix computation.

Lab Assignment: Warm-up with Multiple Threads. Students will learn how to use the computer

systems in the Lab (activities include: login to the Linux machines, write programs,

compile/debug codes, execute programs, prepare Lab reports, and submit reports for grading).

They will be given a program framework that creates a number of processes to print a private

message using Pthreads.

Module 4: Programming Shared Memory Multicore Computers. This module introduces

OpenMP for parallel programming. OpenMP is presented within the context of solving some

numerical algorithms. The key to this section is to start programming and present the examples

in the context of global parallelism (think in parallel) [16]. Using the OpenMP “Parallel Region”

construct, a parallel framework is designed where processes are created at the start of the

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

program and joined at the end of the program. The parallel applications will be implemented

within this framework where parallelism is the default mode of operation. Lectures will cover the

basic operations on dense matrices such as matrix multiplication, Laplace’s equation, and

Gaussian elimination to introduce storage layout and various parallel loops. Work distribution

constructs, parallel loop scheduling techniques, the appropriate use of the correct schedule (static

vs. dynamic) for specific applications will be presented and motivated using the numerical

applications. Synchronization techniques (locks, critical sections, barriers, produce/consume)

will be described and the use of the corresponding OpenMP synchronization constructs will be

signified in example codes. With focus on data-parallelism various schemes of partitioning

matrices for parallel computation including block, cyclic, and block-cyclic partitioning will be

discussed.

Homework: Design a producer/consumer program consisting of many producer and consumer

processes and a shared buffer area.

Lab Assignment: Synchronization in Parallel Programming. This Lab is to demonstrate the need

to use synchronization for correct operation of parallel programs. Students will observe what

happens if they are not used correctly. They will be asked to correct the parallel code by inserting

appropriate synchronization constructs in the code. They will be asked to use alternative

constructs and discuss their observations.

Programming Assignment: Gaussian Elimination. A detailed description of the Gaussian

elimination methodology will be provided to the students. The basic components and hints for

this assignment will also be included. Students will experiment with and learn the strategies of

data partitioning and scheduling; they will observe the impact on performance. Then, they

measure and analyze the efficiency of their parallel programs.

Module 5: Trivial Parallelism. In this module, we will introduce a set of interesting but easy to

parallelize problems known as “embarrassingly” parallel. These problems require the simplest

parallel solution whose computation can obviously be divided into a number of completely

independent parts, each of which can be executed by a separate processor/core. Some problems

in this category include low level image processing, Mandelbrot set [17], Monte Carlo

calculations [18], rendering of computer graphics, brute-force searches in cryptography, BLAST

searches in bioinformatics [19], etc. Several case studies and computing benchmarks will be

introduced. With this module, students are able to recognize some real-application problems that

are highly suitable for parallel execution as well as understand the benefits of parallelism in

speeding up time consuming computation applications. This module introduces Open MPI for

distributed memory parallel programming.

Lab Assignments: Parallel Matrix Multiplication. Students will be presented with two

implementations of OpenMP parallel matrix multiplication programs using two data partition

schemes block-partitioning and cyclic-partitioning to run and analyze their observations. They

will be asked to revise the code using block-cyclic partitioning, measure performance for

comparison and discuss their analysis. This assignment will include the instructions of using

profiling tool (e.g. AMD CodeAnalyst [20]) for performance measurement.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Programming Assignment: Sequential to Parallel Program. Students are given a correctly

running sequential program, for example a simple Monte Carlo simulation [18]. They are then

required to parallelize this program using Pthreads and Open MPI. The assignment includes step-

by-step instructions so that students can write their own multithreaded program, compile and

benchmark it for performance and accuracy. At the same time, they will become familiar with

the Monte Carlo simulations.

Module 6: Massive Parallelism. Graph algorithms will be solved using CUDA/GPU based

parallel programming technique. Graph theory plays an important role in computer science and

engineering because it provides an easy and systematic way to model problems. Many massive

and/or complex problems can be expressed in terms of graphs, and can be solved using standard

graph algorithms. This module will present the parallel formulations of fundamental graph

algorithms. Students will learn how to decompose a graph into sub-graphs with the goal of

optimizing load balance and minimizing synchronization overhead. The parallel implementations

of graph theory including Prim's minimum spanning tree algorithm and Dijkstra’s algorithm will

be covered [21]. GPU-shared-memory programming will also be covered in this module.

Lab Assignment: Minimum Spanning Tree Algorithms. Students will be provided the source

code of sequential minimum spanning tree algorithms. They will be asked to select one of three

available solutions for parallelizing this program. Upon this selection, they will write the parallel

program and present the performance result in class.

Programming Assignment: Number of Fixed Length Paths. Students will design and implement a

parallel program to find the paths in a 1024-node graph with a fixed length using CUDA/GPU.

They will implement CUDA programs with and without GPU’s shared memory.

Module 7: (Optional; if time allows.) Sorting Algorithms. Sorting is one of the most common

and important techniques in computer science and engineering and widely used in many

applications such as database operations, image processing, statistical methodology. A number of

different types of parallel sorting schemes have been developed for a variety of parallel computer

architectures [22-24]. The lectures of this topic present several parallel sorting algorithms such as

merge sort, quicksort, bucket sort and bitonic sort. By solving several parallel sorting algorithms,

we address important techniques like work pool, recursive decomposition, data partitioning,

synchronization, load balancing, and divide and conquer.

Lab Assignment: Parallel Quick Sort Algorithm. In this assignment, students will work with a

demonstration of parallel quick sort algorithm. They will be asked to manipulate the code to

satisfy certain requirements. For example, they may be asked to use parallel tasks instead of

parallel sections or limit the depth of the recursion to certain level. Students will compare their

performance results to the sequential implementation of quicksort and discuss their observations,

improvements, and conclusions.

Programming Assignment: Parallel Sorting Algorithm. Students will design an application to sort

10 million numbers using any one of the parallel sorting algorithm presented in the lectures.

They will be asked to explain the parallel techniques they used for their projects: why were they

chosen and what is their significance?

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Team Project Ideas: Any problem that can be solved by writing traditional/sequential computer

programs and/or developing traditional/sequential computer simulations but takes significant

amount of time may be a nice project topic for this course. We select several typical applications

from different domains that can be parallelized for possible team projects. Students are welcome

to propose their own project ideas for approval. Each team-project packet includes documents for

background knowledge, literature references, project requirements and instructions for

implementation, and outcome evaluation. Some team-project examples are:

Lightning Strike Protection on Nanocomposites: The lack of lightning strike protection (LSP) for

the nanocomposite materials limits their use in many applications including aircrafts. As a result,

there is a continuous interest in understanding the heterogeneous thermoelectric behavior of

mixtures with carbon fibers/nanotubes of these materials. Currently available methodologies,

including computer simulation, to assess the thermoelectric behavior of composite materials are

extremely time consuming, expensive, and ineffectual. A fast and effective simulation model can

be developed using CUDA/GPU technology to analyze LSP on nanocomposite aircrafts.

Processing Large Images: Processing large images is computing intensive and time consuming.

Moreover, sequentially processing an image through the CPU does not take advantage of all the

available processing resources such as general purpose GPU (GPGPU) cards. Applying various

image filters through the GPGPU parallel programming should improve the overall performance

while processing larger images without compromising the existing resources. Other parallel

programming techniques like OpenMP and Open MPI can also be used.

Deterministic Primality Test: Prime numbers play an important role in maintaining the secret spy

codes. Computer hackers try to steal information or break into private transactions. Computer

security authorities use extremely large prime numbers when they devise cryptographs for

protecting vital information that is transmitted between computers [25]. The primality test on

GPGPU is expected to be faster than on CPU for large numbers, such as those used in public key

cryptography. Using parallel solutions (like OpenMP, Open MPI, and CUDA/GPU) not only

should save time, but also should reduce power consumption.

Improve Decryption in a Partially Homomorphic Encryption Schemes: In cryptography, public

key algorithms are widely known to be slower than symmetric key alternatives for their basis in

modular arithmetic. The modular arithmetic in RSA (for R. Rivest, A. Shamir and L. Adleman;

1977) [25] and Diffie Hellman is computationally heavy when compared to symmetric

algorithms relying on simple operations like shifting of bits and XOR. Parallel techniques (like

OpenMP, Open MPI, and CUDA/GPU) can be used to make a more efficient and faster

implementation of public key algorithms.

Parallel Processing of String Matching Algorithms: It is expected to present the parallel

implementations of the Quick-Search, Naive, Knuth-Morris-Pratt, and Boyer-Moore-Horspool

and on-line exact string matching algorithms using the CUDA toolkit. Both the serial and the

parallel implementations should be compared in terms of running time for different reference

sequences, pattern sizes, and number of threads. It is expected that the parallel implementation of

the algorithms is faster than the serial implementation, especially when larger text and smaller

pattern sizes are used.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

5. Preliminary Work: CUDA/GPU Assisted Parallel Programming Model

In this section, we present a CUDA/GPU accelerated parallel programming technique to solve

steady state heat equation [26, 27]. Let’s consider the heat flow in a one-dimensional uniform

bar. If two nearby points on the rod, separately by a small distance d are at temperatures t1 on the

left and t2 on the right, then the heat flow from left to right between these points is proportional

to the temperature difference and inversely proportional to the distance as shown in Equation 1.

Amount of heat per unit time = k(t1 – t2)/d ………………………………………………… (1)

Where, the constant of proportionality k is the thermal conductivity and it depends only on the

materials that make up the rod. Now, we explain the discrete approach of heat conduction on a

2D surface. Consider a physical region (width w * height h) and the boundary conditions as

shown in Figure 2.

 h=100

 |--------------------------------|

 w=0 | | w=200

 |--------------------------------|

 h=0

Figure 2. A physical region with width w=200 and height h=100.

Say, the region is covered with a grid of m * n nodes (see Figure 3). An m * n array A is used to

record the temperature of each node. The correspondence between array indices and locations in

the region is suggested by giving the indices of the four corners:

 [0][n-1] y=n-1 [m-1][n-1]

 |--------------------------------|

 x=0 | | x=m-1

 |--------------------------------|

 [0][0] y=0 [m-1][0]

Figure 3. A physical region with boundary conditions.

The steady state solution to the discrete heat equation satisfies the following condition (see

Equation 2) at an interior grid point:

A [x, y] = (1/4) * (A [x-1, y] + A [x+1, y] + A [x, y+1] + A [x, y-1]) ……………………… (2)

Where, [x, y] is the index of the grid point, [x-1, y] is the index of its immediate neighbor to the

"left/west", and so on. Given an approximate solution of the steady state heat equation, a “better”

solution is given by replacing each interior point by the average of its 4 neighbors – i.e., by using

the condition as an assignment statement (see Equation 3):

A [x, y] <= (1/4) * (a [x-1, y] + A [x+1, y] + A [x, y+1] + A [x, y-1]) ……………………… (3)

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

If this process is repeated often enough, the difference between successive estimates of the

solution will go to zero (or close to zero). In the main loop, after calculating each new A[x, y]

value, it is checked if the value is in the acceptable range or not. We use this approach in our

scheme. However, using parallel programming like CUDA/C, we convert the sequential loop

into parallel equivalent threads and run them concurrently on the GPU cores.

We run the simulation programs on a CUDA server (a CPU/GPU system) in our research

laboratory. Important parameters of the CPU and the GPU are: the CPU is an Intel Xeon E5506

processor with 8 cores the GPU is a NVIDIA Tesla C2075 card with 448 cores. Linux (Debian)

is the operating system (OS).

To implement the steady state heat equation (as shown in Equation 3) on a 2D surface, we

consider that an n * n very thin metal surface has N * N nodes; where N = 100, 500, 1000, 2500,

or 5000. Initially, all the boundary nodes (where x=0, y=0, x=n-1, or y=n-1) are given a value of

0.00 (these values do not change). Also initially, any one node (x, y), where 1 ≤ x ≤ n-1 and 1 ≤ y

≤ n-1, is assumed to have a very high value (1000000 in our experiment). Then the new values

for all nodes are calculated. These iterations are repeated until the new value of a node becomes

less than a predefined small value, often called ‘error tolerance’ (0.0001 in our experiment).

Experimental results (CPU time and GPU time) are shown in Table 1. First thing to notice is that

both the CPU time and the GPU time increase significantly as the problem size increases. At the

beginning, for smaller problem size, CPU time is actually less than the GPU time. However, as

the problem size keeps getting bigger, the GPU time keeps getter better (i.e., smaller). It is also

observed that the shared memory CUDA implementation outperforms the regular CUDA

implementation.

Table 1. CPU and GPU Time due to the steady state heat equation with error tolerance = 0.0001

Problem

Size NxN

CPU Time

(Sec)

GPU Time (Sec)

Without Shared

Memory

With Shared

Memory

100 x 100 2.47 3.86 3.88

500 x 500 421.35 7.60 6.08

1000 x 1000 1572.87 19.17 11.63

2500 x 2500 6592.91 66.72 34.36

5000 x 5000 12071.26 116.71 50.02

We calculate the speedup due to CUDA/GPU implementation over CPU implementation as

shown in Figure 4. For small problems (100 x 100 in our experiment), the speedup is less than

1.0. However, the speedup increases as the problem size increases. It should be noted that the

speedup of CUDA without shared memory is always smaller than that of CUDA with shared

memory. It should also be noted that after the problem size exceeds a limit, although the speedup

of CUDA without shared memory is negligible, the speedup of CUDA with shared memory is

significant. For problem size 5000x5000 in our experiment, CUDA with shared memory

implementation helps reduce processing time from 12071 seconds to 117 seconds (i.e., a speed

up factor of 241).

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Figure 4. Speedup of discrete heat equation using CUDA/GPU based parallel programming.

6. Conclusions

Multicore/manycore computer and parallel computing are today’s actuality. Concurrent

processing, an advanced level parallel computing where multiple computations progress

concurrently at the same time on multiple processing cores, has the potential to speed up the

execution of very complex and large problems. The growing demands for high performance

computing can be fulfilled by developing effective parallel programs suitable for

multicore/manycore systems. Recent reports show that the demands in parallel programming

jobs are growing significantly. Therefore, universities are expected to prepare the new graduates

with proper knowledge and skills in parallel thinking. Present science and engineering curricula

more or less teach the parallel programming APIs like OpenMP, MPI, and CUDA, but do not

develop ‘think in parallel’ aptitudes by addressing the transition from single-core to multicore

architecture and sequential to parallel programming. To address this issue, National Science

Foundation (NSF) is currently supporting various projects to educate STEM educators about

HPC techniques.

This paper introduces an effective approach to train the students with fundamental knowledge

and analytic skills to understand large complex problems and develop parallel computing

solutions to meet the current and future requirements. As an experiment, we introduce

multithreaded parallel programming to undergraduate/graduate level science and engineering

students by updating an existing course. We cover multicore architecture and multithreaded

programming; teach how to dissect a problem and develop multithreaded parallel programming

for multicore CPU and manycore GPU systems using CUDA/C. We greatly appreciate the

feedbacks and advices from the director of Wichita State University (WSU) high performance

computing center (HiPeCC) and the CEO of M2SYS Technology. We review the Student

Outcomes Assessment Reports for this course. According to the experimental results, the

proposed approach shows potential to provide adequate knowledge and training so that students

should be able to develop parallel programs for any complex problems.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

In our laboratory, we develop a CUDA/GPU assisted parallel program to solve the Steady State

Heat Equation (see Equation 3) for different 2D thin surfaces. Experimental results show that up

to 241x speedup can be achieved for an error tolerance of 0.0001 (see Figure 4). Results also

suggest that the parallel solution has potential to save energy consumption by significantly

reducing the execution time.

We feel the need to offer a complete/new course in Multicore Parallel Programming as presented

in this paper for our undergraduate/graduate level STEM students very soon.

Acknowledgements

We sincerely acknowledge Mizan Rahman, Founder and CEO of M2SYS Technology, Atlanta,

GA, for his encouragement to this work and effort to review the earlier drafts of this paper. We

also acknowledge John Matrow, Director of WSU High Performance Computing Center

(HiPeCC), Wichita, KS, for his effort to review students’ projects and provide valuable advices.

Finally, we acknowledge our students for their effort to provide constructive feedbacks.

References

1. “Trends Show Huge Growth in Parallel Programming Job Market,” insidePHC,

http://insidehpc.com/2011/07/16/trends-show-huge-growth-in-parallel-programming-job-

market/ - accessed on June 21, 2013.

2. "Nvidia: CUDA," NVIDIA, http://www.nvidia.com/object/cuda_home_new.html -

accessed on June 21, 2013.

3. “Introduction to Parallel Programming,” Udacity, https://www.udacity.com/course/cs344

- accessed on June 21, 2013.

4. “Intel Many Integrated Core Architecture (Intel MIC Architecture),” Intel Developer

Zone, http://software.intel.com/en-us/forums/intel-many-integrated-core - accessed on

June 21, 2013.

5. Marowka, A. “Think Parallel: Teaching Parallel Programming Today,” in IEEE

Distributed Systems Online, Vol. 9, No. 8, 2008.

6. Mellor-Crummey, J., Gropp, W., and Herlihy, M. “Teaching parallel programming: a

roundtable discussion,” in XRDS: Crossroads, The ACM Magazine for Students - The

Changing Face of Programming, Vol. 17, No. 1, pp. 28-30, 2010

7. “The OpenMP API specification for parallel programming,” OpenMP,

http://openmp.org/wp/ - accessed on June 21, 2013.

8. “Open MPI: High Performance Computing,” Open MPI, http://www.open-mpi.org/ -

accessed on June 21, 2013.

9. "Multicore Programming Education 2009," Workshop on Directions in Multicore

Programming Education, Washington DC, 2009.

10. "Multicore LA 2011: Open Source Software, Multicore and Parallel Computing

Miniconference," http://multicorelca.wordpress.com - accessed on June 21, 2013.

11. Zhu, Y. “Supercomputing Undergraduate Program in Maine (SuperMe),” NSF RUE

Award 0754951, 2008.

12. Zhang, W. “Collaborative Proposal: Problem-Based Learning of Multithreaded

Programming,” NSF CCLI Award1063644, 2011.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

13. Brown, R. “A strategy for injecting parallel computing education throughout the

computer science curriculum,” NSF CCLI Award 0942190, 2010.

14. Ernst, D.J., et al, “Concurrent CS: Preparing Students for a Multicore World,”

ITiCSE’08, 2008.

15. Adams, J., Nevison, C. and Schaller, N.C. “Parallel computing to start the millennium,”

in Proceedings of the thirty-first SIGCSE technical symposium on Computer science

education, ACM publication, Vol. 32 Issue 1, pp. 65-69, March 2000.

16. Alaghband, G. and Jordan, H.F. “Overview of the force scientific parallel language”, in

the Journal Scientific Programming, Vol. 3, No. 1, Spring 1994.

17. Ashlock, D. “Evolutionary Exploration of the Mandelbrot Set,” in IEEE Congress on

Evolutionary Computation, 2006.

18. Coates, R.F.W., Janacek, G.J., and Lever, K.V. “Monte Carlo Simulation and Random

Number Generation,” in IEEE Journal on areas in communications, Vol. 6, No. 1, 1988.

19. "BLAST: Basic Local Alignment Search Tool," http://blast.ncbi.nlm.nih.gov/Blast.cgi -

accessed on June 21, 2013.

20. "AMD CodeAnalyst Performance Analyzer," AMD, http://developer.amd.com/cpu/

codeanalyst - accessed on June 21, 2013.

21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. “Introduction to Algorithms,”

the MIT Press Cambridge (3rd Ed.), Massachusetts, 2009.

22. Amato, N.M., Iyer, R., Sundaresan, S., and Wu, Y. "A Comparison of Parallel Sorting

Algorithms on Different Architectures,” in Technical Report 98-029, Department of

Computer Science, Texas A&M University, 1996.

23. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., and Zagha, M.

“A comparison of sorting algorithms for the Connection Machine CM-2,” in Annual

ACM symposium on parallel algorithms and architectures, pp. 3–16, 1991.

24. Li, H. and Sevcik, K.C. “Parallel sorting by over partitioning,” in the proceedings of the

sixth annual ACM symposium on parallel algorithms and architectures (SPAA'94), pp.

46–56, 1994.

25. Rivest, R.L., Shamir, A., and Adleman, L.M. “RSA algorithm,” U.S. Patent 4,405,829,

1977.

26. “The 2D/3D heat equation,” www.maths.bris.ac.uk/~marp apde2 week3notes.pdf -

accessed on June 21, 2013.

27. Asaduzzaman, A., Yip, C.M., Kumar, S., and Asmatulu, R. “Fast, Effective, and

Adaptable Computer Modelling and Simulation of Lightning Strike Protection on

Composite Materials,” in IEEE SoutheastCon Conference 2013, Jacksonville, Florida,

April 4-7, 2013.

Bibliographical Information

Abu Asaduzzaman

Abu Asaduzzaman received the Ph.D. and M.S. degrees, both in computer engineering, from

Florida Atlantic University (FAU), USA. Currently, he is working as an assistant professor in the

department of electrical engineering and computer science at Wichita State University (WSU) in

Wichita, Kansas. He is the director of WSU’s CAPPLab, which is the CUDA teaching center at

WSU. His research interests include computer architecture, parallel programming, and computer

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

simulation. To date, his scholarly activities have been cited more than 100 times, according to

Google Scholar. Dr. Asaduzzaman is a recipient of Kansas NSF EPSCoR First Award 2013–

2014. He is a member of the IEEE, ASEE, and the honor society of PKP, TBP, UPE, Golden

Key, and Who’s Who. He served as reviewer of NSF TUES (2011) and GRFP (2012), and

EPSCoR RSV Panel-2 (2012) programs. He has served as Session Chair at various prestigious

conferences. He is currently serving as a TPC member of IEEE IPCCC 2013 and as an IPC

member of IEEE ICCIT 2013 conferences.

Ramazan Asmatulu

Ramazan Asmatulu received his Ph.D. degree in 2001 from the Department of Materials Science

and Engineering at Virginia Tech. After having the postdoc experiences, he joined the

department of mechanical engineering at Wichita State University (WSU) in August 2006 as an

assistant professor, and received his tenure and promotion to be associate processor in July,

2012. Dr. Asmatulu is currently working with 14 M.S. and 7 Ph.D. students in the same

department. Throughout his studies, he has published 57 journal papers and 132 conference

proceedings, edited two books, authored 21 book chapters and 4 laboratory manuals, received 28

funded proposals, six patents and 26 honors/awards, presented 61 presentations, chaired many

international conferences and reviewed several manuscripts in international journals and

conference proceedings. To date, his scholarly activities have also been cited more than 500

times, according to the web of science.

Ravi Pendse

Ravi Pendse serves as the Vice President for Information Technology and Chief Information

Officer at Wichita State University. He is also a Professor in the department of electrical

engineering and computer science, Executive Director of advanced networking research institute,

Wichita State Cisco Fellow, and Senior NIAR (national institution of aviation research) Fellow.

Dr. Pendse serves on the advisory committee of Kan-Ed and on the KANREN board. He also

serves on the Microsoft Higher Education Advisory Group (HEAG). He is a senior member of

IEEE and an Independent Director on the Board of High Touch Technologies.

