
Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education 

Thinking in Parallel: Multicore Parallel Programming for STEM Education 
 

1,* 
A. Asaduzzaman, 

2 
R. Asmatulu, and 

1 
R. Pendse 

 
1
Department of Electrical Engineering and Computer Science and 

2
Department of 

Mechanical Engineering, Wichita State University, 1845 Fairmount St, Wichita, KS 67260 

*E-mail: Abu.Asaduzzaman@wichita.edu; Tel: +1-316-978-5261 

 

Abstract 

 

Academic research and engineering challenges both have increasing demands for high 

performance computing (HPC), which can be achieved through multicore parallel programming. 

The existing curricula of most universities do not properly address the major transition from 

single-core to multicore systems and sequential to parallel programming. They focus on applying 

application program interface (API) libraries and techniques like open multiprocessing 

(OpenMP), message passing interface (MPI), and compute unified device architecture 

(CUDA)/graphics processing unit (GPU). This approach misses the goal of developing more 

long-term abilities to solve real-life problems. In this article, we propose a novel approach to 

teach parallel programming that will prepare science, technology, engineering, and mathematics 

(STEM) students for present and future computation challenges. Proposed approach requires 

some C/C++ programming knowledge. As a preliminary attempt, we introduce multithreaded 

parallel programming to our science and engineering students. Based on the Student Outcomes 

Assessment Reports and feedbacks from information technology (IT) professionals, proposed 

approach has potential to provide adequate knowledge so that students can analyze complex 

problems and develop parallel solutions. According to the Steady State Heat Equation 

experiment, CUDA/GPU parallel programming may achieve up to 241x speedup while 

simulating heat transfer on a 5000x5000 thin surface.  

 

Keywords: Concurrent processing, CUDA/GPU technology, multicore/manycore systems, 

parallel programming, STEM education. 

 

1. Introduction 

 

According to job market trends, there are increasing demands for parallel programmers in the 

industries. Based on an insidePHC report, from November 2009 to July 2011, OpenMP jobs 

increased 85%, MPI jobs increased 33%, and CUDA jobs increased 22% [1]. Going forward, all 

processors (except some small embedded processors for specialized devices) will have multiple 

cores in their central processing units (CPUs). Moreover, attached GPU cards with large 

numbers of cores have become very attractive for high performance computing and can provide 

orders of magnitude speedup over using the CPU alone [2, 3]. To address this space, Intel has 

rolled out its Many Integrated Core (MIC) architecture [4]. Systems with a small number of 

cores such as present multicore processors can use a shared memory model whereas as the 

number of cores increase, hierarchical user-managed memory and distributed memory models 

can be expected. Undergraduate programming has yet to address this major transition from single 

core processors to multicore and many-core processors properly. Training students in this 

technology is critical to the future of exploiting new computer systems [5]. Today, with all the 
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advances in hardware technology, we as educators find ourselves with multicore computers as 

servers, desktops, personal computers, and even handheld devices in our laboratories (Labs) 

while still teaching undergraduate students how to design system software, algorithms and 

programming languages for sequential environment [6]. The current practice is to introduce 

parallel programming at graduate-level (only at some high-ranked universities), starting with 

parallel libraries – OpenMP and thread APIs for shared memory systems [7], MPI for message-

passing distributed memory systems [8], and CUDA/GPU for CPU/GPU programming [2]. 

Usually, such a course begins with learning a library, typically MPI applied to a simple parallel 

applications such as matrix multiplication or sorting, then move onto thread-based tools such as 

OpenMP, and finally onto programming GPUs with multithreaded CUDA [9-13]. The focus is 

on learning programming libraries applied to a few simple parallel applications. This approach 

does not fulfill the goal of developing more enduring skills to rationalize about parallel solutions 

and solve larger problems for multiprocessor systems. Therefore, STEM education is badly in 

need of an approach to teach parallel programming that focuses on higher-level programming 

strategies for computational problems and especially on ease of programmability. 

 

The rest of the paper is organized as follows: proposed approach to develop/update pedagogy for 

teaching parallel programming is presented in Section 2. Learning materials are discussed in 

Section 3. Section 4 summarizes the course overview. In Section 5, the Steady State Heat 

Equation is studied as an example of CUDA/GPU assisted multithreaded parallel programming 

model. Finally, this work is concluded in Section 6. 

 

2. Proposed Approach  

We propose an approach for teaching undergraduate/graduate students how to design and 

develop parallel algorithms for multicore architectures. The key success and challenge of this 

project will be helping students to “think in parallel”. Major steps and goals of the proposed 

approach are discussed below.  

 

2.1 Major Steps 

 

Major steps to develop a new pedagogy or update an existing pedagogy are shown in Figure 1. 

Our proposal includes right-to-the-industry-needs activities to prepare students for present and 

future computational (science and engineering) challenges.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Top line: pedagogy development and integration with existing course(s). Bottom line: 

hands-on-activities based on real-world IT needs using multicore parallel programming in C. 
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Our proposed approach has four major steps: analysis, development, implementation, and 

assessment. First, industry needs and current courses are probed to determine if a new course is 

needed or existing course(s) should be updated. Then, pedagogy is developed and implemented 

(accordingly). Finally, student outcomes are assessed. Professional feedbacks and student 

outcomes are considered to improve the pedagogy. We envision that in order to fulfill the 

growing IT industry needs, multicore parallel programming will be made available to all 

undergraduate/graduate engineering students by updating and restructuring existing courses 

(rather than introducing new courses) [8, 14]. However, this paper provides a complete 

documentation to prepare a new course or update existing course(s). 

 

2.2 Major Goals 

 

Most current teaching follows a traditional path of teaching low-level APIs although the parallel 

programming problems now faced by programmers are complex. Our proposal is intended to 

move away from this approach and make the student programmers begin with decomposing the 

problem into widely known patterns and structures. Our hope is that our approach will make 

parallel programming easier and more productive. Major goals of our proposal include:  

• Introduce multicore concept and parallel programming techniques in a Lab oriented 

teaching setting for undergraduate/graduate students. 

• Produce educational materials using the pattern-based programming approach (as much 

as possible) for faculty and professional development. 

• Evaluate the materials with diverse groups of students and related IT professionals. 

• Develop and implement a solid cyclic strategy for revision and re-testing. 

 

2.3 Involving High School and College Educators 

 

We often realize that some university students have fear about science, technology, engineering, 

and mathematics courses. One reason may be that the STEM education, especially the new 

technology, is not effectively transformed to the students during their high-school and/or lower-

level college/university years. This causes serious problems for educators to teach and students 

to learn at upper-level undergraduate and graduate-level courses. The teaching style to provide 

pre-STEM and/or STEM education to the high school and college students are very important. 

For example, in addition to sequential operations, parallel operation concepts can be given at 

some high school level courses like Math, Physics, Chemistry, and Science. Similarly, parallel 

operation concepts can be given at some college level programming courses like C/C++. That 

will help students understand multicore computer systems and parallel computing at the 

universities. Therefore, we think that it is important to involve high school, community college, 

technical training institution, and university teachers to discuss and address how to improve 

STEM education and students’ learning. A combined effort of STEM educators should help 

review the current progress and determine the future adjustments. 

 

3. Learning Materials 

 

The importance of developing a successful strategy to teach parallel computing and 

programming has been raised many times in the past. We think the question is not whether we 

should incorporate the subject in the undergraduate/graduate curriculum, but what would be the 
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right approach. Peter Pacheco designed and offered a sophomore-level undergraduate/graduate 

parallel computing course in the department of computer science and mathematics at the 

University of San Francisco for the first time in 2004. One of the major goals of the course was 

to provide the students with hands-on experience and encourage them to start to think in parallel. 

His conclusions, after offering the course five times, were consistent with the observations that 

students find the concepts of synchronization, race conditions, and parallelism challenging. His 

final recommendation was “don’t expect them to discover how to write parallel programs: give 

them a lot of guidance.” Given that the goal of the course is to help students to “think in 

parallel”, we should provide the environment within which students solve problems with 

parallelism as default. Given such a framework and starting with a problem statement that needs 

to be solved in this framework, will encourage the students to solve the problem in parallel. 

 

We will focus on programming multicore computers with shared memory programming 

languages as well as on message passing programming environments for this course. We believe 

the foundations for thinking in parallel can be better built within the scope of shared memory 

which is the MIMD model for the multicore computers. The MPI programming and design 

developed for message passing distributed MIMD platforms adds an additional level of 

complexity and challenge to problem, data, and program partitioning that can be further explored 

as an advanced level. This experience was shared by Adams, Nevison, and Schaller who 

designed three different parallel computing courses at three different colleges, Calvin, Colgate, 

and RIT [15]. Their experience was that depending on the computing environment they had to 

design different courses and provide a different set of learning experiences for their students. 

 

In many cases, the best parallel solution will perform poorly on a sequential machine. The 

parallel solution performs better only when it is executed concurrently in parallel on a parallel 

computer with enough number of processors. Learning about (i) the trade-offs between 

parallelism and memory usage, (ii) inherently sequential access data structures versus data 

structures that allow for parallel access, (iii) allowing more operations to be performed in a 

parallel version compared to the sequential version of the same problem, etc. can be done most 

effectively when students observe these factors in a hands-on laboratory environment. 

 

Beyond this point is also the philosophy of rethinking the computer science curriculum for 

teaching students to start with parallel programs. Some of the questions to keep in mind as we 

introduce the concepts of parallelism and parallel programming to the students include: 

 

• How can one analyze an application to determine what operations can be done in 

parallel?  

• What aspects of a particular algorithm influence what can be done in parallel?  

• What aspects of a particular algorithm influence what cannot be done in parallel? 

• Is there a way to express a computation without introducing any artificial sequentiality?  

• How dependences among operations can be used to structure special software 

organizations to carry out the computation efficiently on a parallel computer?  

 

We intend to use the lessons we learn and the outcomes of students’ experiences throughout the 

course to develop further strategies for developing ideas for introductory parallel problem 

solving computer science courses. 
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4. Course Overview 

 

The best way to equip students with a rich set of experiences in parallel programming is to give 

them a chance to work with many types of parallel applications. We plan to combine the parallel 

computing concepts with the skills of parallelizing real world problems. Throughout the course 

we will use applications in linear algebra, scientific/engineering problems, and nanocomposites 

as examples in the lectures to relay the fundamental concepts, as frameworks for homework 

assignments, and as case studies for programming Lab assignments and team projects. Students 

will be engaged both in classroom and out-of-classroom actively by participating in the 

classroom discussion and laboratory exercises designed to engrain the concepts being taught 

through the lectures.  

 

4.1 Structure of the Lab Assignments 

 

We will design two types of Lab experiments: Individual Lab assignments and one final team-

project. All assignments will have a classroom discussion followed by students writing a 

summary of their understandings, observations, and conclusions. 

 

I. Individual Lab assignments: In laboratory room; about 10 Labs; 10% of the final grade. The 

progression of each in-Lab assignment will be first introducing the intended concept through 

a dedicated lecture and presenting the students with a complete demonstration of a working 

program which students can simply copy and run, observing the input/output behavior from 

the compiler and executing program, and checking execution times. The student is then asked 

to make a simple modification to the demonstration problem. This forces the students to use 

the editor, and to solve problems in compilation and execution. The Lab will be followed by 

a classroom discussion.  

 

II. Final team-project: 20% of the final grade. Students will form teams based on their interest 

and will work under supervision of either the instructor or one graduate teaching assistant. 

For the final team-project, students will be presented with a number of case study alternatives 

to choose from. Students may also propose their project of interest for approval. Each team 

will produce a written report and will demonstrate their final projects to the class.  

 

4.2 Structure of the Tests 

 

We plan to have three types of tests: Homework (HW), quiz, and exam.  

 

I. HW: Take-home tests; about 10 HW; 10% of the final grade. Each HW will be assigned 

based on the materials covered most recently. 

 

II. Quiz: Classroom tests; about 4, 30 minutes per quiz; 20% of the final grade. Each quiz will 

cover most recently taught materials. 

 

III. Exam: Classroom tests; 2 exams, 70 minutes per exam; 40% of the final grade. Exam-1 will 

be right before the Mid-Term point and Exam-2 will be right before the study day. Materials 

taught after Exam-1 will be covered in Exam-2.  



Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education 

4.3 Course Outline 

 

Proposed course should be a 4 credit hours course with one credit hour laboratory activities. A 

high-level course outline of the proposed semester long senior-level course is presented next. 

 

Prerequisites: Students should have adequate knowledge on the topics covered in Introduction 

to Computer Architecture and Problem Solving and Programming in C/C++ courses.  

 

Module 1: Background and Motivation. This module will introduce the parallel computing by 

means of evolution of parallelism, concurrency, and multicore/manycore computer architectures 

with specific examples to demonstrate each concept. 

 

Homework: Students will be asked to explain their understanding of parallelism in sequential 

machines and contrast it with the type of parallelism in the new multicore computers. 

 

Module 2: Observing Parallelism. This module introduces the data dependence relationships 

and their impact on the ability to perform parallel operations using dataflow graphs. It will 

present several sequential and parallel computation examples using data dependent graphs to 

demonstrate the representation of parallel operations in a given algorithm. Performance analysis 

for these computations will be presented using size, depth, speedup and efficiency of algorithms. 

Graph theory will be introduced and applied to several example computations. 

 

Homework: Design a parallel computation using data dependent graph; analyze the computation 

using size and depth; measure speedup and efficiency of the resulting algorithm. This homework 

problem may be regarding amount of storage needed for archiving many data structures which is 

a good application of parallel prefix computation covered in lectures. 

 

Module 3: Getting Started. To express algorithms, a set of pseudo code conventions for 

expressing sequential and basic parallel operations such as process creation and termination 

(fork/join) and storage classes (shared/private variables) will be presented. An example parallel 

pseudo code such as matrix multiplication will illustrate the parallel operations. Pthread in 

C/C++ will be used to illustrate multithreaded programming. 

 

Homework: Write a parallel code for a parallel prefix computation. 

 

Lab Assignment: Warm-up with Multiple Threads. Students will learn how to use the computer 

systems in the Lab (activities include: login to the Linux machines, write programs, 

compile/debug codes, execute programs, prepare Lab reports, and submit reports for grading). 

They will be given a program framework that creates a number of processes to print a private 

message using Pthreads. 

 

Module 4: Programming Shared Memory Multicore Computers. This module introduces 

OpenMP for parallel programming. OpenMP is presented within the context of solving some 

numerical algorithms. The key to this section is to start programming and present the examples 

in the context of global parallelism (think in parallel) [16]. Using the OpenMP “Parallel Region” 

construct, a parallel framework is designed where processes are created at the start of the 
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program and joined at the end of the program. The parallel applications will be implemented 

within this framework where parallelism is the default mode of operation. Lectures will cover the 

basic operations on dense matrices such as matrix multiplication, Laplace’s equation, and 

Gaussian elimination to introduce storage layout and various parallel loops. Work distribution 

constructs, parallel loop scheduling techniques, the appropriate use of the correct schedule (static 

vs. dynamic) for specific applications will be presented and motivated using the numerical 

applications. Synchronization techniques (locks, critical sections, barriers, produce/consume) 

will be described and the use of the corresponding OpenMP synchronization constructs will be 

signified in example codes. With focus on data-parallelism various schemes of partitioning 

matrices for parallel computation including block, cyclic, and block-cyclic partitioning will be 

discussed. 

 

Homework: Design a producer/consumer program consisting of many producer and consumer 

processes and a shared buffer area. 

 

Lab Assignment: Synchronization in Parallel Programming. This Lab is to demonstrate the need 

to use synchronization for correct operation of parallel programs. Students will observe what 

happens if they are not used correctly. They will be asked to correct the parallel code by inserting 

appropriate synchronization constructs in the code. They will be asked to use alternative 

constructs and discuss their observations. 

 

Programming Assignment: Gaussian Elimination. A detailed description of the Gaussian 

elimination methodology will be provided to the students. The basic components and hints for 

this assignment will also be included. Students will experiment with and learn the strategies of 

data partitioning and scheduling; they will observe the impact on performance. Then, they 

measure and analyze the efficiency of their parallel programs. 

 

Module 5: Trivial Parallelism. In this module, we will introduce a set of interesting but easy to 

parallelize problems known as “embarrassingly” parallel. These problems require the simplest 

parallel solution whose computation can obviously be divided into a number of completely 

independent parts, each of which can be executed by a separate processor/core. Some problems 

in this category include low level image processing, Mandelbrot set [17], Monte Carlo 

calculations [18], rendering of computer graphics, brute-force searches in cryptography, BLAST 

searches in bioinformatics [19], etc. Several case studies and computing benchmarks will be 

introduced. With this module, students are able to recognize some real-application problems that 

are highly suitable for parallel execution as well as understand the benefits of parallelism in 

speeding up time consuming computation applications. This module introduces Open MPI for 

distributed memory parallel programming. 

 

Lab Assignments: Parallel Matrix Multiplication. Students will be presented with two 

implementations of OpenMP parallel matrix multiplication programs using two data partition 

schemes block-partitioning and cyclic-partitioning to run and analyze their observations. They 

will be asked to revise the code using block-cyclic partitioning, measure performance for 

comparison and discuss their analysis. This assignment will include the instructions of using 

profiling tool (e.g. AMD CodeAnalyst [20]) for performance measurement. 
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Programming Assignment: Sequential to Parallel Program. Students are given a correctly 

running sequential program, for example a simple Monte Carlo simulation [18]. They are then 

required to parallelize this program using Pthreads and Open MPI. The assignment includes step-

by-step instructions so that students can write their own multithreaded program, compile and 

benchmark it for performance and accuracy. At the same time, they will become familiar with 

the Monte Carlo simulations. 

 

Module 6: Massive Parallelism. Graph algorithms will be solved using CUDA/GPU based 

parallel programming technique. Graph theory plays an important role in computer science and 

engineering because it provides an easy and systematic way to model problems. Many massive 

and/or complex problems can be expressed in terms of graphs, and can be solved using standard 

graph algorithms. This module will present the parallel formulations of fundamental graph 

algorithms. Students will learn how to decompose a graph into sub-graphs with the goal of 

optimizing load balance and minimizing synchronization overhead. The parallel implementations 

of graph theory including Prim's minimum spanning tree algorithm and Dijkstra’s algorithm will 

be covered [21]. GPU-shared-memory programming will also be covered in this module.  

 

Lab Assignment: Minimum Spanning Tree Algorithms. Students will be provided the source 

code of sequential minimum spanning tree algorithms. They will be asked to select one of three 

available solutions for parallelizing this program. Upon this selection, they will write the parallel 

program and present the performance result in class.  

 

Programming Assignment: Number of Fixed Length Paths. Students will design and implement a 

parallel program to find the paths in a 1024-node graph with a fixed length using CUDA/GPU. 

They will implement CUDA programs with and without GPU’s shared memory.  

 

Module 7: (Optional; if time allows.) Sorting Algorithms. Sorting is one of the most common 

and important techniques in computer science and engineering and widely used in many 

applications such as database operations, image processing, statistical methodology. A number of 

different types of parallel sorting schemes have been developed for a variety of parallel computer 

architectures [22-24]. The lectures of this topic present several parallel sorting algorithms such as 

merge sort, quicksort, bucket sort and bitonic sort. By solving several parallel sorting algorithms, 

we address important techniques like work pool, recursive decomposition, data partitioning, 

synchronization, load balancing, and divide and conquer. 

 

Lab Assignment: Parallel Quick Sort Algorithm. In this assignment, students will work with a 

demonstration of parallel quick sort algorithm. They will be asked to manipulate the code to 

satisfy certain requirements. For example, they may be asked to use parallel tasks instead of 

parallel sections or limit the depth of the recursion to certain level. Students will compare their 

performance results to the sequential implementation of quicksort and discuss their observations, 

improvements, and conclusions. 

 

Programming Assignment: Parallel Sorting Algorithm. Students will design an application to sort 

10 million numbers using any one of the parallel sorting algorithm presented in the lectures. 

They will be asked to explain the parallel techniques they used for their projects: why were they 

chosen and what is their significance? 
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Team Project Ideas: Any problem that can be solved by writing traditional/sequential computer 

programs and/or developing traditional/sequential computer simulations but takes significant 

amount of time may be a nice project topic for this course. We select several typical applications 

from different domains that can be parallelized for possible team projects. Students are welcome 

to propose their own project ideas for approval. Each team-project packet includes documents for 

background knowledge, literature references, project requirements and instructions for 

implementation, and outcome evaluation. Some team-project examples are: 

 

Lightning Strike Protection on Nanocomposites: The lack of lightning strike protection (LSP) for 

the nanocomposite materials limits their use in many applications including aircrafts. As a result, 

there is a continuous interest in understanding the heterogeneous thermoelectric behavior of 

mixtures with carbon fibers/nanotubes of these materials. Currently available methodologies, 

including computer simulation, to assess the thermoelectric behavior of composite materials are 

extremely time consuming, expensive, and ineffectual. A fast and effective simulation model can 

be developed using CUDA/GPU technology to analyze LSP on nanocomposite aircrafts. 

 

Processing Large Images: Processing large images is computing intensive and time consuming. 

Moreover, sequentially processing an image through the CPU does not take advantage of all the 

available processing resources such as general purpose GPU (GPGPU) cards. Applying various 

image filters through the GPGPU parallel programming should improve the overall performance 

while processing larger images without compromising the existing resources. Other parallel 

programming techniques like OpenMP and Open MPI can also be used. 

 

Deterministic Primality Test: Prime numbers play an important role in maintaining the secret spy 

codes. Computer hackers try to steal information or break into private transactions. Computer 

security authorities use extremely large prime numbers when they devise cryptographs for 

protecting vital information that is transmitted between computers [25]. The primality test on 

GPGPU is expected to be faster than on CPU for large numbers, such as those used in public key 

cryptography. Using parallel solutions (like OpenMP, Open MPI, and CUDA/GPU) not only 

should save time, but also should reduce power consumption. 

 

Improve Decryption in a Partially Homomorphic Encryption Schemes: In cryptography, public 

key algorithms are widely known to be slower than symmetric key alternatives for their basis in 

modular arithmetic. The modular arithmetic in RSA (for R. Rivest, A. Shamir and L. Adleman; 

1977) [25] and Diffie Hellman is computationally heavy when compared to symmetric 

algorithms relying on simple operations like shifting of bits and XOR. Parallel techniques (like 

OpenMP, Open MPI, and CUDA/GPU) can be used to make a more efficient and faster 

implementation of public key algorithms.  

 

Parallel Processing of String Matching Algorithms: It is expected to present the parallel 

implementations of the Quick-Search, Naive, Knuth-Morris-Pratt, and Boyer-Moore-Horspool 

and on-line exact string matching algorithms using the CUDA toolkit. Both the serial and the 

parallel implementations should be compared in terms of running time for different reference 

sequences, pattern sizes, and number of threads. It is expected that the parallel implementation of 

the algorithms is faster than the serial implementation, especially when larger text and smaller 

pattern sizes are used.  
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5. Preliminary Work: CUDA/GPU Assisted Parallel Programming Model 

 

In this section, we present a CUDA/GPU accelerated parallel programming technique to solve 

steady state heat equation [26, 27]. Let’s consider the heat flow in a one-dimensional uniform 

bar. If two nearby points on the rod, separately by a small distance d are at temperatures t1 on the 

left and t2 on the right, then the heat flow from left to right between these points is proportional 

to the temperature difference and inversely proportional to the distance as shown in Equation 1. 

 

Amount of heat per unit time = k(t1 – t2)/d ………………………………………………… (1) 

 

Where, the constant of proportionality k is the thermal conductivity and it depends only on the 

materials that make up the rod. Now, we explain the discrete approach of heat conduction on a 

2D surface. Consider a physical region (width w * height h) and the boundary conditions as 

shown in Figure 2. 

 

   h=100 

           |--------------------------------| 

   w=0 |                                          | w=200 

           |--------------------------------| 

   h=0 

Figure 2. A physical region with width w=200 and height h=100. 

 

Say, the region is covered with a grid of m * n nodes (see Figure 3). An m * n array A is used to 

record the temperature of each node. The correspondence between array indices and locations in 

the region is suggested by giving the indices of the four corners: 

 

     [0][n-1]       y=n-1            [m-1][n-1] 

           |--------------------------------| 

    x=0 |                                          | x=m-1 

           |--------------------------------| 

        [0][0]        y=0              [m-1][0] 

 

Figure 3. A physical region with boundary conditions. 

 

The steady state solution to the discrete heat equation satisfies the following condition (see 

Equation 2) at an interior grid point: 

 

A [x, y] = (1/4) * (A [x-1, y] + A [x+1, y] + A [x, y+1] + A [x, y-1]) ……………………… (2) 

 

Where, [x, y] is the index of the grid point, [x-1, y] is the index of its immediate neighbor to the 

"left/west", and so on. Given an approximate solution of the steady state heat equation, a “better” 

solution is given by replacing each interior point by the average of its 4 neighbors – i.e., by using 

the condition as an assignment statement (see Equation 3): 

 

A [x, y] <= (1/4) * (a [x-1, y] + A [x+1, y] + A [x, y+1] + A [x, y-1]) ………………………  (3) 
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If this process is repeated often enough, the difference between successive estimates of the 

solution will go to zero (or close to zero). In the main loop, after calculating each new A[x, y] 

value, it is checked if the value is in the acceptable range or not. We use this approach in our 

scheme. However, using parallel programming like CUDA/C, we convert the sequential loop 

into parallel equivalent threads and run them concurrently on the GPU cores. 

 

We run the simulation programs on a CUDA server (a CPU/GPU system) in our research 

laboratory. Important parameters of the CPU and the GPU are: the CPU is an Intel Xeon E5506 

processor with 8 cores the GPU is a NVIDIA Tesla C2075 card with 448 cores. Linux (Debian) 

is the operating system (OS). 

 

To implement the steady state heat equation (as shown in Equation 3) on a 2D surface, we 

consider that an n * n very thin metal surface has N * N nodes; where N = 100, 500, 1000, 2500, 

or 5000. Initially, all the boundary nodes (where x=0, y=0, x=n-1, or y=n-1) are given a value of 

0.00 (these values do not change). Also initially, any one node (x, y), where 1 ≤ x ≤ n-1 and 1 ≤ y 

≤ n-1, is assumed to have a very high value (1000000 in our experiment). Then the new values 

for all nodes are calculated. These iterations are repeated until the new value of a node becomes 

less than a predefined small value, often called ‘error tolerance’ (0.0001 in our experiment). 

Experimental results (CPU time and GPU time) are shown in Table 1. First thing to notice is that 

both the CPU time and the GPU time increase significantly as the problem size increases. At the 

beginning, for smaller problem size, CPU time is actually less than the GPU time. However, as 

the problem size keeps getting bigger, the GPU time keeps getter better (i.e., smaller). It is also 

observed that the shared memory CUDA implementation outperforms the regular CUDA 

implementation. 

 

Table 1. CPU and GPU Time due to the steady state heat equation with error tolerance = 0.0001 

Problem 

Size NxN 

CPU Time 

(Sec) 

GPU Time (Sec) 

Without Shared 

Memory 

With Shared 

Memory 

100 x 100 2.47 3.86 3.88 

500 x 500 421.35 7.60 6.08 

1000 x 1000 1572.87 19.17 11.63 

2500 x 2500 6592.91 66.72 34.36 

5000 x 5000 12071.26 116.71 50.02 

 

We calculate the speedup due to CUDA/GPU implementation over CPU implementation as 

shown in Figure 4. For small problems (100 x 100 in our experiment), the speedup is less than 

1.0. However, the speedup increases as the problem size increases. It should be noted that the 

speedup of CUDA without shared memory is always smaller than that of CUDA with shared 

memory. It should also be noted that after the problem size exceeds a limit, although the speedup 

of CUDA without shared memory is negligible, the speedup of CUDA with shared memory is 

significant. For problem size 5000x5000 in our experiment, CUDA with shared memory 

implementation helps reduce processing time from 12071 seconds to 117 seconds (i.e., a speed 

up factor of 241). 
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Figure 4. Speedup of discrete heat equation using CUDA/GPU based parallel programming. 

 

6. Conclusions 

 

Multicore/manycore computer and parallel computing are today’s actuality. Concurrent 

processing, an advanced level parallel computing where multiple computations progress 

concurrently at the same time on multiple processing cores, has the potential to speed up the 

execution of very complex and large problems. The growing demands for high performance 

computing can be fulfilled by developing effective parallel programs suitable for 

multicore/manycore systems. Recent reports show that the demands in parallel programming 

jobs are growing significantly. Therefore, universities are expected to prepare the new graduates 

with proper knowledge and skills in parallel thinking. Present science and engineering curricula 

more or less teach the parallel programming APIs like OpenMP, MPI, and CUDA, but do not 

develop ‘think in parallel’ aptitudes by addressing the transition from single-core to multicore 

architecture and sequential to parallel programming. To address this issue, National Science 

Foundation (NSF) is currently supporting various projects to educate STEM educators about 

HPC techniques.  

 

This paper introduces an effective approach to train the students with fundamental knowledge 

and analytic skills to understand large complex problems and develop parallel computing 

solutions to meet the current and future requirements. As an experiment, we introduce 

multithreaded parallel programming to undergraduate/graduate level science and engineering 

students by updating an existing course. We cover multicore architecture and multithreaded 

programming; teach how to dissect a problem and develop multithreaded parallel programming 

for multicore CPU and manycore GPU systems using CUDA/C. We greatly appreciate the 

feedbacks and advices from the director of Wichita State University (WSU) high performance 

computing center (HiPeCC) and the CEO of M2SYS Technology. We review the Student 

Outcomes Assessment Reports for this course. According to the experimental results, the 

proposed approach shows potential to provide adequate knowledge and training so that students 

should be able to develop parallel programs for any complex problems.  
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In our laboratory, we develop a CUDA/GPU assisted parallel program to solve the Steady State 

Heat Equation (see Equation 3) for different 2D thin surfaces. Experimental results show that up 

to 241x speedup can be achieved for an error tolerance of 0.0001 (see Figure 4). Results also 

suggest that the parallel solution has potential to save energy consumption by significantly 

reducing the execution time. 

 

We feel the need to offer a complete/new course in Multicore Parallel Programming as presented 

in this paper for our undergraduate/graduate level STEM students very soon. 
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